首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   6篇
  国内免费   12篇
  2023年   5篇
  2022年   5篇
  2021年   1篇
  2020年   5篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2005年   3篇
  2004年   5篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
1.
A note on a semiparametric estimator of mortality   总被引:1,自引:0,他引:1  
  相似文献   
2.
3.
Vegetation cover creates competing effects on land surface temperature: it typically cools through enhancing energy dissipation and warms via decreasing surface albedo. Global vegetation has been previously found to overall net cool land surfaces with cooling contributions from temperate and tropical vegetation and warming contributions from boreal vegetation. Recent studies suggest that dryland vegetation across the tropics strongly contributes to this global net cooling feedback. However, observation-based vegetation-temperature interaction studies have been limited in the tropics, especially in their widespread drylands. Theoretical considerations also call into question the ability of dryland vegetation to strongly cool the surface under low water availability. Here, we use satellite observations to investigate how tropical vegetation cover influences the surface energy balance. We find that while increased vegetation cover would impart net cooling feedbacks across the tropics, net vegetal cooling effects are subdued in drylands. Using observations, we determine that dryland plants have less ability to cool the surface due to their cooling pathways being reduced by aridity, overall less efficient dissipation of turbulent energy, and their tendency to strongly increase solar radiation absorption. As a result, while proportional greening across the tropics would create an overall biophysical cooling feedback, dryland tropical vegetation reduces the overall tropical surface cooling magnitude by at least 14%, instead of enhancing cooling as suggested by previous global studies.  相似文献   
4.
Land‐use/cover change (LUCC) is an important driver of environmental change, occurring at the same time as, and often interacting with, global climate change. Reforestation and deforestation have been critical aspects of LUCC over the past two centuries and are widely studied for their potential to perturb the global carbon cycle. More recently, there has been keen interest in understanding the extent to which reforestation affects terrestrial energy cycling and thus surface temperature directly by altering surface physical properties (e.g., albedo and emissivity) and land–atmosphere energy exchange. The impacts of reforestation on land surface temperature and their mechanisms are relatively well understood in tropical and boreal climates, but the effects of reforestation on warming and/or cooling in temperate zones are less certain. This study is designed to elucidate the biophysical mechanisms that link land cover and surface temperature in temperate ecosystems. To achieve this goal, we used data from six paired eddy‐covariance towers over co‐located forests and grasslands in the temperate eastern United States, where radiation components, latent and sensible heat fluxes, and meteorological conditions were measured. The results show that, at the annual time scale, the surface of the forests is 1–2°C cooler than grasslands, indicating a substantial cooling effect of reforestation. The enhanced latent and sensible heat fluxes of forests have an average cooling effect of ?2.5°C, which offsets the net warming effect (+1.5°C) of albedo warming (+2.3°C) and emissivity cooling effect (?0.8°C) associated with surface properties. Additional daytime cooling over forests is driven by local feedbacks to incoming radiation. We further show that the forest cooling effect is most pronounced when land surface temperature is higher, often exceeding ?5°C. Our results contribute important observational evidence that reforestation in the temperate zone offers opportunities for local climate mitigation and adaptation.  相似文献   
5.
10–23 DNAzyme is an artificially selected catalytic DNA molecule. Its great potential as genetic therapeutics promoted chemical modifications for more efficient DNAzymes. Here, 10–23 DNAzyme was modified on its six deoxyadenosine residues (A5, A9, A11, A12, A15 in the catalytic domain and A0 of the recognition arm next to the cleavage site) with compound 1, an adenosine analogue with 2′-O-[N-(aminoethyl)carbamoyl]methyl group. A positive effect of compound 1 at A15 was observed (HJDS-05, kobs = 0.0111 min−1). Compared to the effect of 2′-H and 2′-OMe at A15, this result provided an approach for more efficient DNAzyme by combining 2′-substituted amino group of adenosine with A15 as the lead structure.  相似文献   
6.
反照率原位测量对生态系统能量收支及其遥感应用至关重要,但目前坡面地形反照率的测量方式有局限且可见光与近红外波段反照率时间变化的差异尚不清楚。本研究以东北地区帽儿山森林生态站的落叶阔叶林为例,探究入射和反射太阳辐射(SR,300~2800 nm)、光合有效辐射(PAR,400~700 nm)、近红外辐射(NIR,700~2800 nm)的反照率时间变化特征及其影响因子,同时分析了两种辐射表安装方式反照率的差异。结果表明: 晴天SR和NIR反照率日变化呈上下午不对称的U型曲线,但PAR从早到晚递增;阴天反照率均先急剧下降后趋于稳定。平行于坡面测量增大了反照率的日均值,但缓和了SR、NIR反照率日不对称的现象。从整个生长季来看,SR、NIR与PAR反照率水平测量时最大值分别为0.16、0.27和0.11,最小值分别为0.07、0.11和0.03。SR和NIR反照率季节变化均为先增大后减小(7月为峰值),PAR则相反,SR反照率主要受NIR而不是PAR控制。各波段反照率季节变化的影响因子按照贡献率排序为宽带归一化植被指数(61.7%~78.5%,可表征叶面积指数)>太阳高度角(15.4%~36.9%)>晴空指数(0.4%~36.9%)。  相似文献   
7.
In Chile and Uruguay, the gregarious Pteromalidae (Monoksa dorsiplana) has been discovered emerging from seeds of the persistent pods of Acacia caven attacked by the univoltin bruchid Pseudopachymeria spinipes. We investigated the potential for mass rearing of this gregarious ectoparasitoid on an alternative bruchid host, Callosobruchus maculatus, to use it against the bruchidae of native and cultured species of Leguminosea seeds in South America.The mass rearing of M. dorsiplana was carried out in a population cage where the density of egg-laying females per infested seed was increased from 1:1 on the first day to 5:1 on the last (fifth) day. Under these experimental conditions egg-clutch size per host increased, and at the same time the mortality of eggs laid also increased. The density of egg-laying females influenced the sex ratio which tended towards a balance of sons and daughters, in contrast to the sex ratio of a single egg-laying female per host (1 son to 7 daughters). The mean weight of adults emerging from a parasitized host was negatively correlated with the egg-clutch size, i.e. as egg-clutch size increased, adult weight decreased.All these results show that mass rearing of the gregarious ectoparasitoid M. dorsiplana was possible under laboratory conditions on an alternative bruchid host C. maculatus. As M. dorsiplana is a natural enemy of larval and pupal stages of bruchidae, the next step was to investigate whether the biological control of bruchid C. maculatus was possible in an experimental structure of stored beans.  相似文献   
8.
Radiative forcing of natural forest disturbances   总被引:1,自引:0,他引:1  
Forest disturbances are major sources of carbon dioxide to the atmosphere, and therefore impact global climate. Biogeophysical attributes, such as surface albedo (reflectivity), further control the climate‐regulating properties of forests. Using both tower‐based and remotely sensed data sets, we show that natural disturbances from wildfire, beetle outbreaks, and hurricane wind throw can significantly alter surface albedo, and the associated radiative forcing either offsets or enhances the CO2 forcing caused by reducing ecosystem carbon sequestration over multiple years. In the examined cases, the radiative forcing from albedo change is on the same order of magnitude as the CO2 forcing. The net radiative forcing resulting from these two factors leads to a local heating effect in a hurricane‐damaged mangrove forest in the subtropics, and a cooling effect following wildfire and mountain pine beetle attack in boreal forests with winter snow. Although natural forest disturbances currently represent less than half of gross forest cover loss, that area will probably increase in the future under climate change, making it imperative to represent these processes accurately in global climate models.  相似文献   
9.
We report a multiscale study in the Wind River Valley in southwestern Washington, where we quantified leaf to stand scale variation in spectral reflectance for dominant species. Four remotely sensed structural measures, the normalized difference vegetation index (NDVI), cover fractions from spectral mixture analysis (SMA), equivalent water thickness (EWT), and albedo were investigated using Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data. Discrimination of plant species varied with wavelength and scale, with deciduous species showing greater separability than conifers. Contrary to expectations, plant species were most distinct at the branch scale and least distinct at the stand scale. At the stand scale, broadleaf and conifer species were spectrally distinct, as were most conifer age classes. Intermediate separability occurred at the leaf scale. Reflectance decreased from leaf to stand scales except in the broadleaf species, which peaked in near-infrared reflectance at the branch scale. Important biochemical signatures became more pronounced spectrally progressing from leaf to stand scales. Recent regenerated clear-cuts (less than 10 years old) had the highest albedo and nonphotosynthetic vegetation (NPV). After 50 years, the stands showed significant decreases in albedo, NPV, and EWT and increases in shade. Albedo was lowest in old-growth forests. Peak EWT, a proxy measure for leaf area index (LAI), was observed in 11- to 30-year-old stands. When compared to LAI, EWT and NDVI showed exponentially decreasing, but distinctly different, relationships with increasing LAI. This difference is biologically important: at 95% of the maximum predicted NDVI and EWT, LAI was 5.17 and 9.08, respectively. Although these results confirm the stand structural variation expected with forest succession, remote-sensing images also provide a spatial context and establish a basis to evaluate variance within and between age classes. Landscape heterogeneity can thus be characterized over large areas—a critical and important step in scaling fluxes from stand-based towers to larger scales.  相似文献   
10.
It has been hypothesized that a positive feedback between vegetation cover and monsoon circulation may lead to the existence of two alternative stable states in the Sahara region: a vegetated state with moderate precipitation and a desert state with low precipitation. This could explain the sudden onset of desertification in the region about 5000 years ago. However, other models suggest that the effect of vegetation on the precipitation may be insufficient to produce this behavior. Here, we show that inclusion of the microscale feedback between soil and vegetation in the model greatly amplifies the nonlinearity, causing alternative stable states and considerable hysteresis even if the effect of vegetation on precipitation is moderate. On the other hand, our analysis suggests that self‐organized vegetation patterns known from models that only focus at the microscale plant–soil feedback will be limited to a narrower range of conditions due to the regional scale climate‐feedback. This implies that in monsoon areas such as the Western Sahara self‐organized vegetation patterns are predicted to be less common than in areas without monsoon circulation such as Central Australia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号