首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   4篇
  国内免费   16篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
1.
一、前言1984、1985年笔者与陈挺恩等两次对江苏句容仑山以及江宁汤山地区奥陶系剖面进行观察和研究.在仑山附近奥陶系剖面的红花园组、大湾组、牯牛潭组和宝塔组中,采到数量较多的鹦鹉螺化石.除红花园组化石制片尚有困难,暂时未着手研究;大湾组、牯牛潭组、宝塔组的化石,经研究共有13属、36种.其中1新属,ll新种,1比较种,2未定种.江苏句容县仑山,江宁县汤山附近的奥陶系研究较早.德国学者 Richthofen  相似文献   
2.
近地层高臭氧浓度对水稻生长发育影响研究进展   总被引:11,自引:0,他引:11  
臭氧(O3)被认为是最主要的空气污染物之一.目前地球对流层大气中平均O3浓度已经从工业革命前的38 nl·L-1(25~45 nl·L-1,夏季每天8 h平均)上升到2000年的50 nl·L-1,悲观估计到2100年近地层O3浓度将上升到80 nl·L-1.水稻是世界上最重要的粮食作物,准确评估近地层O3浓度升高对水稻生长发育的影响具有重要意义.本文从叶片伤害特征、光合作用、水分关系、生育期、物质生产与分配、叶片膜保护系统、籽粒产量及产量构成因素等方面,系统收集和整理了气室条件下(包括封闭气室、开放式气室)高O3浓度对水稻生长发育影响的研究进展,并对该领域有待深入研究的方向进行了展望.  相似文献   
3.
利用开顶式气室对春小麦进行了一个生长季的CO2倍增盆栽实验,土壤水分控制为3个水平(分别为田间持水量(FWC)的80%、60%、40%).结果显示,CO2倍增显著提高小麦的光合速率.但在相同的CO2测定浓度下, 生长在加倍CO2浓度下的小麦的光合速率比当前CO2浓度下小麦低22%.高CO2浓度显著促进小麦生长,相对增加幅度在适宜水分下最大,为14.8%.80%FWC水分条件下高CO2使植株的干重/高度比增加15.7%.高CO2条件下,小麦的蒸腾速率降低、累积耗水量减少、水分利用效率(WUE)提高,WUE的提高幅度在适宜水分下最大,为30%.干旱(40%FWC)使小麦地上干重和WUE在当前CO2条件下分别降低72%和19%,加倍CO2条件下降低幅度较大,分别为76%和23%.根据以上结果得出结论: (1) 高CO2条件下, 小麦的光合速率、地上生物量和水分利用效率提高;(2) 植物长期生长于高CO2浓度导致光合能力降低;(3) 高CO2对植物侧向生长的促进作用大于垂直生长,即高CO2下植株将相对粗壮;(4) 高CO2对植物的生态效应依赖于土壤水分,在适宜水分下相对较大;(5) 在未来高CO2条件下,干旱引起的减产和水分利用效率减低幅度将会更大.  相似文献   
4.
CO2浓度升高和干旱对春小麦生长和水分利用的生态效应   总被引:6,自引:0,他引:6  
利用开顶式气室对春小麦进行了一个生长季的CO2倍增盆栽实验,土壤水分控制为3个水平(分别为田间持水量(FWC)的80%,60%,40%)。结果显示,CO2倍增显提高小麦的光合速率。但在相同的CO2测定浓度下,生长在加倍CO2浓度下的小麦的光合速率比当前CO2浓度下小麦低22%。高CO2浓度显促进小麦生长,相对增加幅度在适宜水分下最大为14.8%。80%FWC水分条件下高CO2使植株的干重/高度比增加15.7%,高CO2条件下,小麦的蒸腾速率降低,累积耗水量减少,水分利用效率(WUE)提高,WUE的提高幅度在适宜水分下最大,为30%。干旱(40%FWC)使小麦地上干重和WUE在当前CO2条件下分别降低72%和19%,加倍CO2条件下降低幅度较大,分别为76%和23%。根据以上结果得出结论:(1)高CO2条件下,小麦的光合速率,地上生物量和水分利用效率提高;(2)植物长期生长于高CO2浓度导致光合能力降低;(3)高CO2对植物侧向生长的促进作用大于垂直生长,即高CO2下植株将相对粗壮;(4)高CO2对植物的生态效应依赖于土壤水分,在适宜水分下相对较大;(4)在未来高CO2条件下,干旱引起的减产和水分利用效率减低幅度将会更大。  相似文献   
5.
 土壤呼吸响应全球气候变化对全球C循环具有重要作用。应用大型开顶箱(Open-top chamber, OTC)人工控制手段, 研究了大气CO2浓度倍增、高氮沉降和高降雨处理对南亚热带人工森林生态系统土壤呼吸的影响。结果表明: 对照箱、CO2浓度倍增处理以及高氮沉降处理下土壤呼吸速率都具有明显的季节变化, 雨季(4~9月)的土壤呼吸速率显著高于旱季(10月至次年3月) (p<0.001); 但高降雨处理下无明显的季节差异(p>0.05)。CO2浓度倍增能显著提高土壤呼吸速率(p<0.05), 其他处理则变化不大。大气CO2浓度倍增、高氮沉降、高降雨处理和对照箱的土壤呼吸年通量分别为4 241.7、3 400.8、3 432.0和3 308.4 g CO2·m–2·a–1。但在不同季节, 各种处理对土壤呼吸的影响是不同的。在雨季, 大气CO2浓度倍增和高氮沉降的土壤呼吸速率显著提高(p<0.05), 其他处理无显著变化; 而在旱季, 高降雨的土壤呼吸速率显著高于对照箱(p<0.05), 氮沉降处理则抑制土壤呼吸作用(p<0.05)。各处理的土壤呼吸速率与地下5 cm土壤温度之间具有显著的指数关系(p<0.001); 当土壤湿度低于15%时, 各处理的土壤呼吸速率与地下5 cm土壤湿度具有显著的线性关系(p<0.001)。  相似文献   
6.
在辽宁沈阳农田生态系统国家野外科学观测研究站,利用运行2a的开顶式气室,研究了臭氧(O3)浓度升高和不同氮肥施用水平对土壤线虫群落的影响。结果表明:(1)O3浓度升高降低了成熟期小麦根生物量。O3浓度升高和不同氮肥施用水平的交互作用改变了小麦成熟期土壤微生物生物量碳、氮和水溶性有机碳的含量。低氮条件下,O3浓度升高降低了土壤微生物生物量碳、氮和水溶性有机碳的含量;而高氮条件下则表现出相反的趋势。(2)O3浓度升高和不同氮肥施用水平对土壤线虫总数没有产生显著影响,而在灌浆期,食细菌线虫和食真菌线虫中c-p值为4(Ba4 and Fu4)的功能团对O3浓度升高和不同氮肥施用水平的响应敏感;与对照相比,不同氮处理中,O3浓度升高均降低了灌浆期Ba4功能团线虫的数量。灌浆期,O3浓度升高条件下,与对照相比Fu4功能团线虫数量在高氮条件下表现出增加的趋势,而在低氮条件表现出降低的趋势。(3)O3浓度升高和不同氮肥施用水平的交互作用显著影响了小麦灌浆期线虫的成熟度指数(MI)和结构指数(SI)。与对照相比,线虫成熟度指数和结构指数在低氮条件下随O3浓度升高而降低;而在高氮条件下随O3浓度升高而升高。上述结果表明,氮肥的施用能够缓解O3浓度升高对土壤食物网的扰动。  相似文献   
7.
 采用动态密闭气室法(IRGA)对农牧交错区10种植物群落最大生物量时期的土壤呼吸日动态进行了测定,并将该方法得到的土壤日呼吸速率与碱液吸收法(AA)进行了比较。结果表明:1)10个群落土壤呼吸的昼夜变化比较明显,均为单峰型曲线,主要受土壤温度的驱动,但同时也受到当日降水情况和云量、风速等气象因子的较大影响。因此,这些群落土壤呼吸日动态的一致性较差,规律性并不明显。2)用碱液吸收法和动态密闭气室法测定的10个群落的土壤呼吸速率变化范围分别为394~894 mg C·m-2·d-1和313~2043 mg C·m-2·d-1,其中碱液吸收法测定结果平均为动态气室法的67.5%,明显低于动态密闭气室法。3)两种测定方法具有很好的相关性,R2为0.873 9。本研究中发现,在土壤呼吸速率低的情况下,两种方法的测定结果十分接近甚至碱液吸收法测定结果稍大于动态密闭气室法,而在土壤呼吸速率较高的情况下,动态密闭气室法测定结果则显著高于碱液吸收法。上述结果与国内外同类研究的结果高度一致,从而为校正以往采用碱液吸收法在该区域的测定结果提供了可靠依据。  相似文献   
8.
IPCC(Intergovernmental Panel on Climate Change)报告预测,到2100年CO2浓度会出现430~480、580~720、720~1000和>1000μmol·mol-1 4种不同情景,而目前同时探究所有CO2情景下植物响应情况的研究很少。本试验利用开顶式气室分别探究自然大气浓度(约400μmol·mol-1)、550、750和1000μmol·mol-1 4个CO2水平在生长季内对一年生木荷(Schima superba)幼苗气体交换参数、光合色素含量及生物量的影响。结果表明:熏气期间,550、750和1000μmol·mol-1浓度下木荷幼苗净光合速率分别平均提升32.7%、66.7%、82.7%,胞间CO2浓度分别平均增加60.3%、126.2%、223.9%,而高浓度CO2对净光合速率的提升作用随着熏气时间延长,可能受叶片氮含量减少等非...  相似文献   
9.
近地层臭氧(O3)浓度升高作为全球气候变化的重要因素之一,对土壤生态环境和农作物生长发育造成了很大影响.本研究采用开顶式气室(OTCs)法,探究臭氧浓度升高对小麦不同生育期(分蘖期、拔节期、孕穗期和成熟期)根际土壤酶活性(过氧化氢酶、多酚氧化酶、脱氢酶和转化酶)和有机酸含量(草酸、柠檬酸和苹果酸)的影响规律,并结合根际土壤理化性质、植株根系生长状况等分析其产生影响的原因.结果表明: O3浓度升高不同程度地提高了小麦成熟期土壤过氧化氢酶、多酚氧化酶、脱氢酶和转化酶活性,其中过氧化氢酶和多酚氧化酶活性提高达显著水平;在抽穗期,脱氢酶和转化酶活性因臭氧浓度升高而显著提高,增幅最高可达76.7%.在成熟期,O3浓度升高显著提高了根际土壤中柠檬酸和苹果酸含量;显著降低了根际土壤pH、电导率、总碳和总氮含量,增加了土壤氧化还原电位(Eh);显著降低了小麦根系生物量、总根长和根总表面积,而增加了根平均直径.  相似文献   
10.
Elymus nutans Griseb. is a typical important plant species in the alpine meadow of Qinghai-Tibetan plateau. To examine the effects of temperature elevation on its physiological and chemical characteristics, a simulation study was conducted in situ with open-top chambers (OTC) followed the method of International Tundra Experiment (ITEX) from November 2002 to September 2007, and these OTCs were designed five kinds of size with bottom diameters of 0.85, 1.15, 1.45, 1.75, 2.05 m so as to rise different air temperatures. The air temperature inside OTCs increased by 2.68, 1.57, 1.20, 1.07 and 0.69 °C with increase of OTC diameter compared with ambient air. We found that with increase of air temperature, the soluble sugar content and SOD (superoxide dismutase) activity in leaves of E. nutans increased first, and then decreased, whereas, the soluble protein content and GSH (Glutathione) content decreased first and increased then, the chlorophyll a and total chlorophyll contents were decreased, but the contents of chlorophyll b were higher than that of control. Increased temperature enhanced the above-ground biomass and blade height of E. nutans. These results indicated that elevated temperature had significant and complicated effects on physiological–biochemical characteristics of E. nutans on Qinghai-Tibet plateau, when the temperature increased within the range of 0.69–1.57 °C, it may have positive effects on plant growth and development, and E. nutans could adapt even develop defensive strategy to the changes of a certain ecological environment changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号