首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  国内免费   1篇
  2019年   2篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  1999年   1篇
  1998年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Oxymatrine(OMT), as the main active component of Sophoraflavescens, exhibits a variety of pharmacological properties,including anti-oxidative, anti-inflammatory, anti-tumor, and anti-viral activities, and currently is extensively employed to treat viral hepatitis; however, its effects on parvovirus infection have yet to be reported. In the present study, we investigated the effects of OMT on cell viability, virus DNA replication, viral gene expression, cell cycle, and apoptosis in Walter Reed canine cells/3873 D infected with minute virus of canines(MVC). OMT, at concentrations below 4 mmol/L(no cellular toxicity), was found to inhibit MVC DNA replication and reduce viral gene expression at both mRNA and protein levels, which was associated with the inhibition of cell cycle S-phase arrest in early-stage of MVC infection.Furthermore, OMT significantly increased cell viability, decreased MVC-infected cell apoptosis, and reduced the expression of activated caspase 3. Our results suggest that OMT has potential application in combating parvovirus infection.  相似文献   
2.
Pneumonia, the inflammatory state of lung tissue primarily due to microbial infection, claimed 52,306 lives in the United States in 20071 and resulted in the hospitalization of 1.1 million patients2. With an average length of in-patient hospital stay of five days2, pneumonia and influenza comprise significant financial burden costing the United States $40.2 billion in 20053. Under the current Infectious Disease Society of America/American Thoracic Society guidelines, standard-of-care recommendations include the rapid administration of an appropriate antibiotic regiment, fluid replacement, and ventilation (if necessary). Non-standard therapies include the use of corticosteroids and statins; however, these therapies lack conclusive supporting evidence4. (Figure 1)Osteopathic Manipulative Treatment (OMT) is a cost-effective adjunctive treatment of pneumonia that has been shown to reduce patients’ length of hospital stay, duration of intravenous antibiotics, and incidence of respiratory failure or death when compared to subjects who received conventional care alone5. The use of manual manipulation techniques for pneumonia was first recorded as early as the Spanish influenza pandemic of 1918, when patients treated with standard medical care had an estimated mortality rate of 33%, compared to a 10% mortality rate in patients treated by osteopathic physicians6. When applied to the management of pneumonia, manual manipulation techniques bolster lymphatic flow, respiratory function, and immunological defense by targeting anatomical structures involved in the these systems7,8, 9, 10.The objective of this review video-article is three-fold: a) summarize the findings of randomized controlled studies on the efficacy of OMT in adult patients with diagnosed pneumonia, b) demonstrate established protocols utilized by osteopathic physicians treating pneumonia, c) elucidate the physiological mechanisms behind manual manipulation of the respiratory and lymphatic systems. Specifically, we will discuss and demonstrate four routine techniques that address autonomics, lymph drainage, and rib cage mobility: 1) Rib Raising, 2) Thoracic Pump, 3) Doming of the Thoracic Diaphragm, and 4) Muscle Energy for Rib 1.5,11  相似文献   
3.
Flavonoid compounds are ubiquitous in nature. They constitute an important part of the human diet and act as active principles of many medicinal plants. Their O-methylation increases their lipophilicity and hence, their compartmentation and functional diversity. We have isolated and characterized a full-length flavonoid O-methyltransferase cDNA (TaOMT2) from a wheat leaf cDNA library. The recombinant TaOMT2 protein was purified to near homogeneity and tested for its substrate preference against a number of phenolic compounds. Enzyme assays and kinetic analyses indicate that TaOMT2 exhibits a pronounced preference for the flavone, tricetin and gives rise to three methylated enzyme reaction products that were identified by TLC, HPLC and ESI-MS/MS as its mono-, di- and trimethyl ether derivatives. The sequential order of tricetin methylation by TaOMT2 is envisaged to proceed via its 3′-mono- → 3′,5′-di- → 3′,4′,5′-trimethyl ether derivatives. To our knowledge, this is the first report of a gene product that catalyzes three sequential O-methylations of a flavonoid substrate.  相似文献   
4.
NovP is an S-adenosyl-l-methionine-dependent O-methyltransferase that catalyzes the penultimate step in the biosynthesis of the aminocoumarin antibiotic novobiocin. Specifically, it methylates at 4-OH of the noviose moiety, and the resultant methoxy group is important for the potency of the mature antibiotic: previous crystallographic studies have shown that this group interacts directly with the target enzyme DNA gyrase, which is a validated drug target. We have determined the high-resolution crystal structure of NovP from Streptomyces spheroides as a binary complex with its desmethylated cosubstrate S-adenosyl-l-homocysteine. The structure displays a typical class I methyltransferase fold, in addition to motifs that are consistent with a divalent-metal-dependent mechanism. This is the first representative structure of a methyltransferase from the TylF superfamily, which includes a number of enzymes implicated in the biosynthesis of antibiotics and other therapeutics. The NovP structure reveals a number of distinctive structural features that, based on sequence conservation, are likely to be characteristic of the superfamily. These include a helical ‘lid’ region that gates access to the cosubstrate binding pocket and an active center that contains a 3-Asp putative metal binding site. A further conserved Asp likely acts as the general base that initiates the reaction by deprotonating the 4-OH group of the noviose unit. Using in silico docking, we have generated models of the enzyme-substrate complex that are consistent with the proposed mechanism. Furthermore, these models suggest that NovP is unlikely to tolerate significant modifications at the noviose moiety, but could show increasing substrate promiscuity as a function of the distance of the modification from the methylation site. These observations could inform future attempts to utilize NovP for methylating a range of glycosylated compounds.  相似文献   
5.
6.
Plant S-adenosyl-l-methionine-dependent class I natural product O-methyltransferases (OMTs), related to animal catechol OMTs, are dependent on bivalent cations and strictly specific for the meta position of aromatic vicinal dihydroxy groups. While the primary activity of these class I enzymes is methylation of caffeoyl coenzyme A OMTs, a distinct subset is able to methylate a wider range of substrates, characterized by the promiscuous phenylpropanoid and flavonoid OMT. The observed broad substrate specificity resides in two regions: the N-terminus and a variable insertion loop near the C-terminus, which displays the lowest degree of sequence conservation between the two subfamilies. Structural and biochemical data, based on site-directed mutagenesis and domain exchange between the two enzyme types, present evidence that only small topological changes among otherwise highly conserved 3-D structures are sufficient to differentiate between an enzymatic generalist and an enzymatic specialist in plant natural product methylation.  相似文献   
7.
Plant S-adenosyl-L-methionine-dependent methyltransferases (SAM-Mtases) are the key enzymes in phenylpropanoid, flavonoid and many other metabolic pathways of biotechnological importance. Here we compiled the amino acid sequences of 56 SAM-Mtases from different plants and performed a computer analysis for the conserved sequence motifs that could possibly act as SAM-binding domains. To date, genes or cDNAs encoding at least ten distinct groups of SAM-Mtases that utilize SAM and a variety of substrates have been reported from higher plants. Three amino acid sequence motifs are conserved in most of these SAM-Mtases. In addition, many conserved domains have been discovered in each group of O-methyltransferases (OMTs) that methylate specific substrates and may act as sites for substrate specificity in each enzyme. Finally, a diagrammatic representation of the relationship between different OMTs is presented. These SAM-Mtase sequence signatures will be useful in the identification of SAM-Mtase motifs in the hitherto unidentified proteins as well as for designing primers in the isolation of new SAM-Mtases from plants.  相似文献   
8.
O-linked methylation of sugar substituents is a common modification in the biosynthesis of many natural products and is catalyzed by multiple families of S-adenosyl-l-methionine (SAM or AdoMet)-dependent methyltransferases (MTs). Mycinamicins, potent antibiotics from Micromonospora griseorubida, can be methylated at two positions on a 6-deoxyallose substituent. The first methylation is catalyzed by MycE, a SAM- and metal-dependent MT. Crystal structures were determined for MycE bound to the product S-adenosyl-l-homocysteine (AdoHcy) and magnesium, both with and without the natural substrate mycinamicin VI. This represents the first structure of a natural product sugar MT in complex with its natural substrate. MycE is a tetramer of a two-domain polypeptide, comprising a C-terminal catalytic MT domain and an N-terminal auxiliary domain, which is important for quaternary assembly and for substrate binding. The symmetric MycE tetramer has a novel MT organization in which each of the four active sites is formed at the junction of three monomers within the tetramer. The active-site structure supports a mechanism in which a conserved histidine acts as a general base, and the metal ion helps to position the methyl acceptor and to stabilize a hydroxylate intermediate. A conserved tyrosine is suggested to support activity through interactions with the transferred methyl group from the SAM methyl donor. The structure of the free enzyme reveals a dramatic order-disorder transition in the active site relative to the S-adenosyl-l-homocysteine complexes, suggesting a mechanism for product/substrate exchange through concerted movement of five loops and the polypeptide C-terminus.  相似文献   
9.
The Madagascar periwinkle (Catharanthus roseus) produces the well-known and remarkably complex anti-cancer dimeric alkaloids vinblastine and vincristine that are derived from the coupling of vindoline and catharanthine monomers. This study describes the novel application of a carborundum abrasion (CA) technique for large-scale isolation of leaf epidermis-enriched proteins in order to purify to apparent homogeneity 16-hydroxytabersonine-16-O-methyltransferase (16OMT), which catalyses the second of six steps in the conversion of tabersonine into vindoline, and to clone the gene. Functional expression and biochemical characterization of recombinant 16OMT demonstrated its very narrow substrate specificity and high affinity for 16-hydroxytabersonine. In addition to allowing the cloning of this gene, the CA technique clearly showed that 16OMT is predominantly expressed in Catharanthus leaf epidermis. The results provide compelling evidence that most of the pathway for vindoline biosynthesis, including the O-methylation of 16-hydroxytabersonine, occurs exclusively in the leaf epidermis, with subsequent steps occurring in other leaf cell types.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号