首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2004年   2篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Glucokinase (hexokinase IV) continues to be a compelling target for the treatment of type 2 diabetes given the wealth of supporting human genetics data and numerous reports of robust clinical glucose lowering in patients treated with small molecule allosteric activators. Recent work has demonstrated the ability of hepatoselective activators to deliver glucose lowering efficacy with minimal risk of hypoglycemia. While orally administered agents require a considerable degree of passive permeability to promote suitable exposures, there is no such restriction on intravenously delivered drugs. Therefore, minimization of membrane diffusion in the context of an intravenously agent should ensure optimal hepatic targeting and therapeutic index. This work details the identification a hepatoselective GKA exhibiting the aforementioned properties.  相似文献   
2.
An in vitro screening protocol was used to transform a systemically-distributed SCD inhibitor into a liver-targeted compound. Incorporation of a key nicotinic acid moiety enables molecular recognition by OATP transporters, as demonstrated by uptake studies in transfected cell lines, and likely serves as a critical component of the observed liver-targeted tissue distribution profile. Preclinical anti-diabetic oGTT efficacy is demonstrated with nicotinic acid-based, liver-targeting SCD inhibitor 10, and studies with a close-structural analog devoid of SCD1 activity, suggest this efficacy is a result of on-target activity.  相似文献   
3.
Human BCRP and OATP1B1 have recently been identified as important transporters in the absorption, distribution, and elimination of clinically significant drugs. In this report, we illustrate the use of modified baculoviruses, termed BacMam viruses for the expression of functional BCRP and OATP1B1 in mammalian cells. We show a variety of host cells efficiently transduced to express BCRP including HEK 293, LLC-PK, and U-2 OS, where protein levels on the cell-surface were modulated by titrating different amounts of viral inoculum. In addition, using the BODIPY-prazosin efflux assay and the BacMam reagent we illustrate inhibition of BCRP activity with GF120918 or Fumitremorgin C. Furthermore, we present data demonstrating simultaneous expression of BCRP and OATP1B1 in BacMam transduced mammalian cells by simply adding viral inoculum of each transporter. Thus these results indicate that BacMam mediated gene delivery provides a novel and efficient research tool for the investigation of single or multiple transporters in vitro.  相似文献   
4.
Organic anion-transporting polypeptides (human, OATPs; other animals, Oatps; gene symbol, SLCO/Slco) form a transport protein superfamily that mediates the translocation of amphipathic substrates across the plasma membrane of animal cells. So far, OATPs/Oatps have been identified in human, rat and mouse tissues. In this study, we used bioinformatic tools to detect new members of the OATP/SLCO superfamily in nonmammalian species and to build models for the three-dimensional structure of OATPs/Oatps. New OATP/SLCO superfamily members, some of which form distinct novel families, were identified in chicken, zebrafish, frog, fruit fly and worm species. The lack of OATP/SLCO superfamily members in plants, yeast and bacteria suggests the emergence of an ancient Oatp protein in an early ancestor of the animal kingdom. Structural models were generated for the representative members OATP1B3 and OATP2B1 based on the known structures of the major facilitator superfamily of transport proteins. A model was also built for the large extracellular region between transmembrane helices 9 and 10, following the identification of a novel homology with the Kazal-type serine protease inhibitors. Along with the electrostatic potential and the conservation of key amino acid residues, we propose a common transport mechanism for all OATPs/Oatps, whereby substrates are translocated through a central, positively charged pore in a rocker-switch type of mechanism. Several amino acid residues were identified that may play crucial roles in the proposed transport mechanism. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   
5.
Nuclear receptors (NRs) represent attractive targets for the treatment of metabolic syndrome-related diseases. In addition, natural products are an interesting pool of potential ligands since they have been refined under evolutionary pressure to interact with proteins or other biological targets.This review aims to briefly summarize current basic knowledge regarding the liver X (LXR) and farnesoid X receptors (FXR) that form permissive heterodimers with retinoid X receptors (RXR). Natural product-based ligands for these receptors are summarized and the potential of LXR, FXR and RXR as targets in precision medicine is discussed.  相似文献   
6.
With the world-wide increase of patients with renal failure, the development of functional renal replacement therapies have gained significant interest and novel technologies are rapidly evolving. Currently used renal replacement therapies insufficiently remove accumulating waste products, resulting in the uremic syndrome. A more preferred treatment option is kidney transplantation, but the shortage of donor organs and the increasing number of patients waiting for a transplant warrant the development of novel technologies. The bioartificial kidney (BAK) is such promising biotechnological approach to replace essential renal functions together with the active secretion of waste products. The development of the BAK requires a multidisciplinary approach and evolves at the intersection of regenerative medicine and renal replacement therapy. Here we provide a concise review embracing a compact historical overview of bioartificial kidney development and highlighting the current state-of-the-art, including implementation of living-membranes and the relevance of extracellular matrices. We focus further on the choice of relevant renal epithelial cell lines versus the use of stem cells and co-cultures that need to be implemented in a suitable device. Moreover, the future of the BAK in regenerative nephrology is discussed.  相似文献   
7.
微囊藻毒素研究的当前进展和未来方向   总被引:2,自引:0,他引:2  
蓝藻是一种广泛分布于全世界水体中的光能自养型微生物,其特点之一是所产生的特殊次级代谢产物藻毒素对于许多物种都有毒性作用。在正常生态环境中,水体中蓝藻数量维持在正常范围。人类活动的加剧以及对于水环境管理的缺乏造成了全球范围内的水体污染,其中以水体富营养化尤为严重,且有不断增加的趋势。水体富营    相似文献   
8.
Although singly ablating Fabp1 or Scp2/Scpx genes may exacerbate the impact of high fat diet (HFD) on whole body phenotype and non-alcoholic fatty liver disease (NAFLD), concomitant upregulation of the non-ablated gene, preference for ad libitum fed HFD, and sex differences complicate interpretation. Therefore, these issues were addressed in male and female mice ablated in both genes (Fabp1/Scp2/Scpx null or TKO) and pair-fed HFD. Wild-type (WT) males gained more body weight as fat tissue mass (FTM) and exhibited higher hepatic lipid accumulation than WT females. The greater hepatic lipid accumulation in WT males was associated with higher hepatic expression of enzymes in glyceride synthesis, higher hepatic bile acids, and upregulation of transporters involved in hepatic reuptake of serum bile acids. While TKO had little effect on whole body phenotype and hepatic bile acid accumulation in either sex, TKO increased hepatic accumulation of lipids in both, specifically phospholipid and cholesteryl esters in males and females and free cholesterol in females. TKO-induced increases in glycerides were attributed not only to complete loss of FABP1, SCP2 and SCPx, but also in part to sex-dependent upregulation of hepatic lipogenic enzymes. These data with WT and TKO mice pair-fed HFD indicate that: i) Sex significantly impacted the ability of HFD to increase body weight, induce hepatic lipid accumulation and increase hepatic bile acids; and ii) TKO exacerbated the HFD ability to induce hepatic lipid accumulation, regardless of sex, but did not significantly alter whole body phenotype in either sex.  相似文献   
9.
The liver‐specific organic anion transporting polypeptides OATP1B1 and OATP1B3 are highly homologous and share numerous substrates. However, at low concentrations OATP1B1 shows substrate selectivity for estrone‐3‐sulfate. In this study, we investigated the molecular mechanism for this substrate selectivity of OATP1B1 by constructing OATP1B1/1B3 chimeric transporters and by site‐directed mutagenesis. Functional studies of chimeras showed that transmembrane domain 10 is critical for the function of OATP1B1. We further identified four amino acid residues, namely L545, F546, L550, and S554 in TM10, whose simultaneous mutation caused almost complete loss of OATP1B1‐mediated estrone‐3‐sulfate transport. Comparison of the kinetics of estrone‐3‐sulfate transport confirmed a biphasic pattern for OATP1B1, but showed a monophasic pattern for the quadruple mutant L545S/F546L/L550T/S554T. This mutant also showed reduced transport for other OATP1B1 substrates such as bromosulfophthalein and [D ‐penicillamine2,5]enkephalin. Helical wheel analysis and molecular modeling suggest that L545 is facing the substrate translocation pathway, whereas F546, L550, and S554 are located inside the protein. These results indicate that L545 might contribute to OATP1B1 function by interacting with substrates, whereas F546, L550, and S554 seem important for protein structure. In conclusion, our results show that TM10 is critical for the function of OATP1B1.  相似文献   
10.
Hepatic disposition plays a significant role in the pharmacokinetics and pharmacodynamics of a variety of drugs. Sinusoidal membrane transporters have been shown to participate in the hepatic disposition of many pharmaceuticals. Two sinusoidal membrane transporters with an established role in hepatic disposition are OATP1B1 and OATP1B3 (organic anion-transporting polypeptides 1B1 and 1B3, respectively). OATP1B1 and OATP1B3 have been implicated in the hepatic uptake of statin drugs, and polymorphisms linked to OATP1B1 have been associated with deleterious patient endpoints. As a result, OATP1B1 and OATP1B3 represent sites for potential drug-drug interactions. Numerous methods exist for identifying potential drug-drug interactions with transporters. However, relatively few offer the convenience and speed of fluorescence-based assays. Here a fluorescence-based assay was developed for measuring the OATP1B1- and OATP1B3-mediated transport of 8-fluorescein-cAMP (8-FcA). The OATP1B1- and OATP1B3-mediated transport of 8-FcA was time dependent and saturable (Km = 2.9 and 1.8 μM, Vmax = 0.20 and 0.33 pmol/min/cm2, respectively). Molecules known to interact with OATPs, including cyclosporin A, rifampicin, and glibenclamide, each demonstrated concentration-dependent inhibition of 8-FcA transport by OATP1B1 and OATP1B3. The in vitro fluorescence-based assays described here using 8-FcA as the substrate are convenient and rapid and have utility in screening drug candidates for potential drug-drug interactions with OATP1B1 and OATP1B3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号