首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3365篇
  免费   21篇
  国内免费   45篇
  2022年   13篇
  2021年   18篇
  2020年   18篇
  2019年   38篇
  2018年   31篇
  2017年   33篇
  2016年   27篇
  2015年   93篇
  2014年   226篇
  2013年   375篇
  2012年   305篇
  2011年   333篇
  2010年   285篇
  2009年   64篇
  2008年   90篇
  2007年   81篇
  2006年   85篇
  2005年   63篇
  2004年   50篇
  2003年   78篇
  2002年   51篇
  2001年   46篇
  2000年   36篇
  1999年   56篇
  1998年   47篇
  1997年   48篇
  1996年   48篇
  1995年   40篇
  1994年   61篇
  1993年   53篇
  1992年   48篇
  1991年   42篇
  1990年   49篇
  1989年   53篇
  1988年   59篇
  1987年   47篇
  1986年   37篇
  1985年   28篇
  1984年   43篇
  1983年   33篇
  1982年   35篇
  1981年   40篇
  1980年   34篇
  1979年   30篇
  1978年   10篇
  1977年   10篇
  1976年   14篇
  1975年   6篇
  1974年   4篇
  1973年   6篇
排序方式: 共有3431条查询结果,搜索用时 15 毫秒
1.
The human blood-brain barrier glucose transport protein (GLUT1) forms homodimers and homotetramers in detergent micelles and in cell membranes, where the GLUT1 oligomeric state determines GLUT1 transport behavior. GLUT1 and the neuronal glucose transporter GLUT3 do not form heterocomplexes in human embryonic kidney 293 (HEK293) cells as judged by co-immunoprecipitation assays. Using homology-scanning mutagenesis in which GLUT1 domains are substituted with equivalent GLUT3 domains and vice versa, we show that GLUT1 transmembrane helix 9 (TM9) is necessary for optimal association of GLUT1-GLUT3 chimeras with parental GLUT1 in HEK cells. GLUT1 TMs 2, 5, 8, and 11 also contribute to a less abundant heterocomplex. Cell surface GLUT1 and GLUT3 containing GLUT1 TM9 are 4-fold more catalytically active than GLUT3 and GLUT1 containing GLUT3 TM9. GLUT1 and GLUT3 display allosteric transport behavior. Size exclusion chromatography of detergent solubilized, purified GLUT1 resolves GLUT1/lipid/detergent micelles as 6- and 10-nm Stokes radius particles, which correspond to GLUT1 dimers and tetramers, respectively. Studies with GLUTs expressed in and solubilized from HEK cells show that HEK cell GLUT1 resolves as 6- and 10-nm Stokes radius particles, whereas GLUT3 resolves as a 6-nm particle. Substitution of GLUT3 TM9 with GLUT1 TM9 causes chimeric GLUT3 to resolve as 6- and 10-nm Stokes radius particles. Substitution of GLUT1 TM9 with GLUT3 TM9 causes chimeric GLUT1 to resolve as a mixture of 6- and 4-nm particles. We discuss these findings in the context of determinants of GLUT oligomeric structure and transport function.  相似文献   
2.
Abstract We have analyzed the sequence downstream of rpoN from Zcinetobacter calcoaceticus and identified an open reading frame encoding a protein with high similarity to UDP- N -acetylgucosamine 1-carboxyvinyl-transferase (MurZ). Multicopy plasmids encoding this enzyme conferred phosphomycin resistance to A. calcoaceticus . The polar effect of a rpoN mutation on the phosphomycin resistance level suggests that murZ is, in part, cotranscribed with rpoN . These observations confirm that A. calcoaceticus represents the first exceptin from a conserved genetic context of rpoN observed in several other Gram-negative bacteria.  相似文献   
3.
Transport of GABA at the Blood-CSF Interface   总被引:2,自引:1,他引:1  
Abstract: The entry of GABA into cerebrospinal fluid (CSF) was studied in dogs anesthetized with pentobarbital and relaxed with suxamethonium. GABA was administered intravenously as a priming dose and subsequent maintenance infusion to compensate for the rapid elimination of the amino acid. Steady state concentrations of GABA in CSF were reached between 10 and 60 min after injection, the rate of entry tending to decrease with increasing plasma levels. During steady state conditions CSF concentrations showed great interin-dividual differences and varied between 0.03 and 5.1% of those in plasma. Probenecid and sodium valproate considerably enhanced the CSF/plasma concentration ratio of GABA. When GABA was directly injected into the liquor space, probenecid slowed down the elimination of GABA from CSF. The results suggest a transport of GABA into and out of CSF, the outward transport being inhibited by probenecid and sodium valproate.  相似文献   
4.
The evolutionarily broad family nucleobase-cation symporter-2 (NCS2) encompasses transporters that are conserved in binding site architecture but diverse in substrate selectivity. Putative purine transporters of this family fall into one of two homology clusters: COG2233, represented by well studied xanthine and/or uric acid permeases, and COG2252, consisting of transporters for adenine, guanine, and/or hypoxanthine that remain unknown with respect to structure-function relationships. We analyzed the COG2252 genes of Escherichia coli K-12 with homology modeling, functional overexpression, and mutagenesis and showed that they encode high affinity permeases for the uptake of adenine (PurP and YicO) or guanine and hypoxanthine (YjcD and YgfQ). The two pairs of paralogs differ clearly in their substrate and ligand preferences. Of 25 putative inhibitors tested, PurP and YicO recognize with low micromolar affinity N6-benzoyladenine, 2,6-diaminopurine, and purine, whereas YjcD and YgfQ recognize 1-methylguanine, 8-azaguanine, 6-thioguanine, and 6-mercaptopurine and do not recognize any of the PurP ligands. Furthermore, the permeases PurP and YjcD were subjected to site-directed mutagenesis at highly conserved sites of transmembrane segments 1, 3, 8, 9, and 10, which have been studied also in COG2233 homologs. Residues irreplaceable for uptake activity or crucial for substrate selectivity were found at positions occupied by similar role amino acids in the Escherichia coli xanthine- and uric acid-transporting homologs (XanQ and UacT, respectively) and predicted to be at or around the binding site. Our results support the contention that the distantly related transporters of COG2233 and COG2252 use topologically similar side chain determinants to dictate their function and the distinct purine selectivity profiles.  相似文献   
5.
Abstract: The enzymatic hydrolysis of UDP-galactose in rat and calf brain was studied. The hydrolysis occurs in two steps: The first is the conversion of UDP-galactose to galactose-1-phosphate catalyzed by nucleotide pyrophosphatase (EC 3.6.1.9), and the second is the conversion of the latter to free galactose by alkaline phosphatase (EC 3.1.3.1). The overall conversion has a pH optimum of 9.0, but there is considerable activity at pH 7.4, which is the optimum for UDP-galactose:ceramide galactosyltransferase in the synthesis of cerebrosides. Preparations from cytosol from calf brain cerebellum or stem that were enriched in UDP-galactose hydrolytic activity inhibit cerebroside synthesis under conditions optimal for the synthesis. Microsome-rich and nuclear debris fractions contain the highest apparent specific activity among the subcellular fractions studied. Hydrolysis of UDP-galactose occurs in all areas of brain, brainstem having the highest activity. The apparent specific activity in jimpy mouse brain homogenate is nearly twice as high as in the control brain homogenate.  相似文献   
6.
An unusual filamentous, gliding bacterium was found in a few hot springs in Oregon where it formed a nearly unispecific top layer of microbial mats. It contained a bacteriochlorophyll a-like pigment and an abundance of carotenoids. There were no chlorosomes or additional chlorophylls. The organism was aerotolerant and appeared to be photoheterotrophic. It was successfully co-cultured with an aerobic chemoheterotroph in a medium containing glucose and casamino acids. Although it has many characteristics in common with the genus Chloroflexus, the lack of chlorosomes and bacteriochlorophyll c and the aerobic nature of this organism indicate that it should be placed in a new genus. This conclusion is supported by 5S rRNA nucleotide sequence data.  相似文献   
7.
Iron is an essential element for diverse biological functions. In mammals, the majority of iron is enclosed within a single prosthetic group: heme. In metazoans, heme is synthesized via a highly conserved and coordinated pathway within the mitochondria. However, iron is acquired from the environment and subsequently assimilated into various cellular pathways, including heme synthesis. Both iron and heme are toxic but essential cofactors. How is iron transported from the extracellular milieu to the mitochondria? How are heme and heme intermediates coordinated with iron transport? Although recent studies have answered some questions, several pieces of this intriguing puzzle remain unsolved.  相似文献   
8.
Addition of a metabolizable substrate (glucose, ethanol and, to a degree, trehalose) to non-growing baker's yeast cells causes a boost of protein synthesis, reaching maximum rate 20 min after addition of glucose and 40–50 min after ethanol or trehalose addition. The synthesis involves that of transport proteins for various solutes which appear in the following sequence: H+, l-proline, sulfate, l-leucine, phosphate, α-methyl-d-glucoside, 2-aminoisobutyrate. With the exception of the phosphate transport system, the Kt of the synthesized systems is the same as before stimulation. Glucose is usually the best stimulant, but ethanol matches it in the case of sulfate and exceeds it in the case of proline. This may be connected with ethanol's stimulating the synthesis of transport proteins both in mitochondria and in the cytosol while glucose acts on cytosolic synthesis alone. The stimulation is often repressed by ammonium ions (leucine, proline, sulfate, H+), by antimycin (proline, trehalose, sulfate, H+), by iodoacetamide (all systems tested), and by anaerobic preincubation (leucine, proline, trehalose, sulfate). It is practically absent in a respiration-deficient petite mutant, only little depressed in the op1 mutant lacking ADP/ATP exchange in mitochondria, but totally suppressed (with the exception of transport of phosphate) in a low-phosphorus strain. The addition of glucose causes a drop in intracellular inorganic monophosphate by 30%, diphosphate by 45%, ATP by 70%, in total amino acids by nearly 50%, in transmembrane potential (absolute value) by about 50%, an increase of high-molecular-weight polyphosphate by 65%, of total cAMP by more than 100%, in the endogenous respiration rate by more than 100%, and a change of intracellular pH from 6.80 to 7.05. Ethanol caused practically no change in ATP, total amino acids, endogenous respiration, intracellular pH or transmembrane potential; a slight decrease in inorganic monophosphate and diphosphate and a sizeable increase in high-molecular-weight polyphosphate. The synthesis of the various transport proteins thus appears to draw its energy from different sources and with different susceptibility to inhibitors. It is much more stimulated in facultatively aerobic species (Saccharomyces cerevisiae, Endomyces magnusii) than in strictly aerobic ones (Rhodotorula glutinis, Candida parapsilosis) where an inhibition of transport activity is often observed after preincubation with metabolizable substrates.  相似文献   
9.
Two mutants that grew faster than the wild-type (WT) strain under high light conditions were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in ssl1690 encoding NdhO. Deletion of ndhO increased the activity of NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET), while overexpression decreased the activity. Although deletion and overexpression of ndhO did not have significant effects on the amount of other subunits such as NdhH, NdhI, NdhK, and NdhM in the cells, the amount of these subunits in the medium size NDH-1 (NDH-1M) complex was higher in the ndhO-deletion mutant and much lower in the overexpression strain than in the WT. NdhO strongly interacts with NdhI and NdhK but not with other subunits. NdhI interacts with NdhK and the interaction was blocked by NdhO. The blocking may destabilize the NDH-1M complex and repress the NDH-CET activity. When cells were transferred from growth light to high light, the amounts of NdhI and NdhK increased without significant change in the amount of NdhO, thus decreasing the relative amount of NdhO. This might have decreased the blocking, thereby stabilizing the NDH-1M complex and increasing the NDH-CET activity under high light conditions.  相似文献   
10.
Abstract

An efficient synthesis of adenosine bearing pyrrolepolyamide 1 was achieved by coupling of 3 with 2. The CD spectra obtained at several [ligand ]/[duplex] ratios allowed verification of the formation complex of the DNA duplex [d(CGCAAATTGGC)/d(GCCAATTTGCG)] with 1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号