首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   500篇
  免费   34篇
  国内免费   8篇
  542篇
  2023年   10篇
  2022年   11篇
  2021年   15篇
  2020年   25篇
  2019年   20篇
  2018年   21篇
  2017年   23篇
  2016年   22篇
  2015年   27篇
  2014年   28篇
  2013年   46篇
  2012年   84篇
  2011年   31篇
  2010年   21篇
  2009年   17篇
  2008年   18篇
  2007年   11篇
  2006年   7篇
  2005年   12篇
  2004年   15篇
  2003年   12篇
  2002年   5篇
  2001年   8篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   1篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
排序方式: 共有542条查询结果,搜索用时 15 毫秒
1.
Fully adult partial skeletons attributed to Australopithecus afarensis (AL 288-1, “Lucy”) and to Homo habilis (OH 62, “Lucy's child”), respectively, both include remains from upper and lower limbs. Relationships between various limb bone dimensions of these skeletons are compared to those of modern African apes and humans. Surprisingly, it emerges that OH 62 displays closer similarities to African apes than does AL 288-1. Yet A. afarensis, whose skeleton is dated more than 1 million years earlier, is commonly supposed to be the ancestor of Homo habilis. If OH 62, classified as Homo habilis by its discoverers, does indeed represent a stage intermediate between A. afarensis and later Homo, a revised interpretation of the course of human evolution would be necessary.  相似文献   
2.
The mitochondrial inner membrane anion channel (IMAC) is a channel, identified by flux studies in intact mitochondria, which has a broad anion selectivity and is maintained closed or inactive by matrix Mg2+ and H+. We now present evidence that this channel, like many other chloride/anion channels, is reversibly blocked/inhibited by stilbene-2,2-disulfonates. Inhibition of malonate transport approaches 100% with IC50 values of 26, 44, and 88 M for DIDS, H2-DIDS, and SITS respectively and Hill coefficients 1. In contrast, inhibition of Cl transport is incomplete, reaching a maximum of about 30% at pH 7.4 and 65% at pH 8.4 with an IC50 which is severalfold higher than that for malonate. The IC50 for malonate transport is decreased about 50% by pretreatment of the mitochondria withN-ethylmaleimide. Raising the assay pH from 7.4 to 8.4 increases the IC50 by about 50%, but under conditions where only the matrix pH is made alkaline the IC50 is decreased slightly. These properties and competition studies suggest that DIDS inhibits by binding to the same site as Cibacron blue 3GA. In contrast, DIDS does not appear to compete with the fluorescein derivative Erythrosin B for inhibition. These findings not only provide further evidence that IMAC may be more closely related to other Cl channels than previously thought, but also suggest that other Cl channels may be sensitive to some of the many regulators of IMAC which have been identified.  相似文献   
3.
Summary Protoplasts isolated from the aleurone have been used extensively in molecular studies focusing on hormone-mediated regulation of gene expression in barley seed. To extend the use of aleurone protoplasts to other species, we have determined the conditions necessary for the isolation of protoplasts from rice aleurone layers of germinated seed. Many of the common cell wall degrading enzymes used in making protoplasts were tested for their ability to release protoplasts from rice aleurone layers. Cellulysin was found to be the most effective. Transformation of these aleurone protoplasts was accomplished using polyethylene glycol and DNA constructs containing the firefly luciferase reporter gene under the control of two different promoters were tested. Luciferase expression was 24-fold greater when the reporter gene was under the control of the CaMV 35S promoter than when the promoter from the alcohol dehydrogenase 1 gene was used. With the isolation and transformation of aleurone protoplasts from rice, it is now possible to investigate molecular events occurring in this tissue during germination.  相似文献   
4.
A (13, 14)--glucan 4-glucanohydrolase [(13, 14)--glucanase, EC 3.2.1.73] was purified to homogeneity from extracts of germinated wheat grain. The enzyme, which was identified as an endohydrolase on the basis of oligosaccharide products released from a (13, 14)--glucan substrate, has an apparent pI of 8.2 and an apparent molecular mass of 30 kDa. Western blot analyses with specific monoclonal antibodies indicated that the enzyme is related to (13, 14)--glucanase isoenzyme EI from barley. The complete primary structure of the wheat (13, 14)--glucanase has been deduced from nucleotide sequence analysis of cDNAs isolated from a library prepared using poly(A)+ RNA from gibberellic acid-treated wheat aleurone layers. One cDNA, designated LW2, is 1426 nucleotide pairs in length and encodes a 306 amino acid enzyme, together with a NH2-terminal signal peptide of 28 amino acid residues. The mature polypeptide encoded by this cDNA has a molecular mass of 32085 and a predicted pI of 8.1. The other cDNA, designated LW1, carries a 109 nucleotide pair sequence at its 5 end that is characteristic of plant introns and therefore appears to have been synthesized from an incompletely processed mRNA. Comparison of the coding and 3-untranslated regions of the two cDNAs reveals 31 nucleotide substitutions, but none of these result in amino acid substitutions. Thus, the cDNAs encode enzymes with identical primary structures, but their corresponding mRNAs may have originated from homeologous chromosomes in the hexaploid wheat genome.  相似文献   
5.
Inhibition of parathormone-stimulated bone resorption by type I interferon   总被引:1,自引:0,他引:1  
The effect of Type I interferon on bone resorption was studied by measuring its effect on parathormone-stimulated calcium release from neonatal murine calvaria in vitro. A pure human recombinant leukocyte interferon hybrid of the A and D subtypes was used, which has high antiviral activity on mouse cells. Calcium release was inhibited in a dose dependent fashion with 50% inhibition at about 10(-10) M or 600 U/ml, and the inhibition was reversible. The presence of interferon was required before or during the activation phase of the resorptive response, when the formation of osteoclasts from precursor cells would occur. When added to actively resorbing bone it had no effect. The data suggest that Type I interferon can inhibit the parathormone-regulated development of active osteoclasts, possibly by inhibiting osteoclast precursor differentiation.  相似文献   
6.
β-Endorphin (β-LPH 61–91), γ-endorphin (61–77), des-tyrosine-γ-endorphin (62–77), α-endorphin (61–76), and β-LPH 61–69 either labeled with [125I] at the N-terminal 61-tyrosine residue or unlabeled were incubated with a crude synaptosomal plasma membrane fraction of rat brain or in human serum. At different time intervals the release of [125I]-tyrosine or the change in immunoreactivity of the endorphins was determined. The cSPM preparation displayed both high aminopeptidase and endopeptidase activities. In contrast, human serum mainly contained aminopeptidase activity. The data suggest that functional endorphin metabolism may occur at the synaptosomal plasma membrane. These membranes may potentially be involved in the formation of behaviorally active endorphin fragments.  相似文献   
7.
During meiosis, chromosomes undergo dramatic changes in structural organization, nuclear positioning, and motion. Although the nuclear pore complex has been shown to affect genome organization and function in vegetative cells, its role in meiotic chromosome dynamics has remained largely unexplored. Recent work in the budding yeast Saccharomyces cerevisiae demonstrated that the mobile nucleoporin Nup2 is required for normal progression through meiosis I prophase and sporulation in strains where telomere-led chromosome movement has been compromised. The meiotic-autonomous region, a short fragment of Nup2 responsible for its role in meiosis, was shown to localize to the nuclear envelope via Nup60 and to bind to meiotic chromosomes. To understand the relative contribution these 2 activities have on meiotic-autonomous region function, we first carried out a screen for meiotic-autonomous region mutants defective in sporulation and found that all the mutations disrupt interaction with both Nup60 and meiotic chromosomes. Moreover, nup60 mutants phenocopy nup2 mutants, exhibiting similar nuclear division kinetics, sporulation efficiencies, and genetic interactions with mutations that affect the telomere bouquet. Although full-length Nup60 requires Nup2 for function, removal of Nup60’s C-terminus allows Nup60 to bind meiotic chromosomes and promotes sporulation without Nup2. In contrast, binding of the meiotic-autonomous region to meiotic chromosomes is completely dependent on Nup60. Our findings uncover an inhibitory function for the Nup60 C-terminus and suggest that Nup60 mediates recruitment of meiotic chromosomes to the nuclear envelope, while Nup2 plays a secondary role counteracting the inhibitory function in Nup60’s C-terminus.  相似文献   
8.
We have isolated cDNA clones encoding dihydropyrimidinase (DHPase) from human liver and its three homologues from human fetal brain. The deduced amino acid (aa) sequence of human DHPase showed 90% identity with that of rat DHPase, and the three homologues showed 57–59% aa identity with human DHPase, and 74–77% aa identity with each other. We tentatively termed these homologues human DHPase related protein (DRP)-1, DRP-2 and DRP-3. Human DRP-2 showed 98% aa identity with chicken CRMP-62 (collapsin response mediator protein of relative molecular mass of 62 kDa) which is involved in neuronal growth cone collapse. Human DRP-3 showed 94–100% aa identity with two partial peptide sequences of rat TOAD-64 (turned on after division, 64 kDa) which is specifically expressed in postmitotic neurons. Human DHPase and DRPs showed a lower degree of aa sequence identity with Bacillus stearothermophilus hydantoinase (39–42%) and Caenorhabditis elegans unc-33 (32–34%). Thus we describe a novel gene family which displays differential tissue distribution: i.e., human DHPase, in liver and kidney; human DRP-1, in brain; human DRP-2, ubiquitously expressed except for liver; human DRP-3, mainly in heart and skeletal muscle.  相似文献   
9.
为探究中华蜜蜂Apis cerana cerana dynactin p62基因的表达特性, 本研究克隆了中华蜜蜂dynactin p62的基因组DNA序列(GenBank登录号: JX101463) 和mRNA序列(GenBank登录号: JX101464); 采用荧光定量PCR检测了中华蜜蜂dynactin p62在不同发育时期(3日龄和6日龄幼虫、 刚羽化出房蜜蜂)三型蜂中mRNA的表达量。结果表明: 该基因基因组DNA序列全长为2 403 bp, mRNA序列全长为1 491 bp, 编码496个氨基酸残基, 预测的蛋白分子量为56.49 kD, 等电点为8.31。系统发育分析表明中华蜜蜂dynactin p62与西方蜜蜂Apis mellifera dynactin p62聚成一支。该基因在不同发育时期均有表达, 在雌性蜜蜂(蜂王和工蜂)中, 刚羽化成虫期的表达量显著高于幼虫期(P<0.05), 并且同一发育时期相比, 工蜂的表达量显著高于蜂王(P<0.05); 而该基因在雄蜂中表达量没有明显的规律性。这些结果提示该基因可能与中华蜜蜂级型分化有关。  相似文献   
10.
Xie  Linlin  Ju  Zhao  Zhong  Chaojie  Wu  Yingjun  Zan  Yuxing  Hou  Wei  Feng  Yong 《中国病毒学》2021,36(1):85-94
The human myxovirus resistance 2(Mx2/Mx B) protein, a member of interferon(IFN)-inducible dynamin-like large GTPases, restricts a number of virus infections. Inhibition of these viruses occurs at poorly-defined steps after viral entry and has a common requirement for Mx B oligomerization. However, the GTPase activity is essential for the anti-viral effects of Mx B against herpesviruses and HBV but not HIV-1. To understand the role of Mx B GTPase activity, including GTP binding and GTP hydrolysis, in restriction of HIV-1 infection, we genetically separated these two functions and evaluated their contributions to restriction. We found that both the GTP binding and hydrolysis function of Mx B involved in the restriction of HIV-1 replication. The GTPase activity of Mx B contributed to its nuclear location, interaction with nucleoporins(NUPs) and HIV-1 capsids. Furthermore, Mx B disrupted the association between NUPs and HIV-1 cores dependently upon its GTPase activity. The function of GTPase activity was therefore multi-faceted, led to fundamentally distinct mechanisms employed by wild-type Mx B and GTPase activity defective Mx B mutations to restrict HIV-1 replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号