首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5095篇
  免费   41篇
  国内免费   82篇
  5218篇
  2023年   18篇
  2022年   27篇
  2021年   47篇
  2020年   49篇
  2019年   58篇
  2018年   75篇
  2017年   36篇
  2016年   37篇
  2015年   136篇
  2014年   367篇
  2013年   355篇
  2012年   383篇
  2011年   498篇
  2010年   405篇
  2009年   190篇
  2008年   214篇
  2007年   197篇
  2006年   223篇
  2005年   181篇
  2004年   183篇
  2003年   166篇
  2002年   103篇
  2001年   48篇
  2000年   77篇
  1999年   81篇
  1998年   69篇
  1997年   64篇
  1996年   69篇
  1995年   68篇
  1994年   69篇
  1993年   69篇
  1992年   60篇
  1991年   47篇
  1990年   54篇
  1989年   44篇
  1988年   37篇
  1987年   38篇
  1986年   33篇
  1985年   32篇
  1984年   44篇
  1983年   26篇
  1982年   43篇
  1981年   40篇
  1980年   44篇
  1979年   32篇
  1978年   10篇
  1977年   13篇
  1976年   17篇
  1971年   7篇
  1970年   7篇
排序方式: 共有5218条查询结果,搜索用时 15 毫秒
1.
Three DNA fragments, trs1, 2 and 3, were isolated from the Trichoderma reesei genome on the basis of their ability to promote autonomous replication of plasmids in Saccharomyces cerevisiae. Each trs element bound specifically to the isolated T. reesei nuclear matrix in vitro, and two of them bound in vivo, indicating that they are matrix attachment regions (MARs). A similar sequence previously isolated from Aspergillus nidulans (ans1) was also shown to bind specifically to the T. reesei nuclear matrix in vitro. The T. reesei MARs are AT-rich sequences containing 70%, 86% and 73% A+T over 2.9, 0.8 and 3.7 kb, respectively for trs1, 2 and 3. They exhibited no significant sequence homology, but were shown to contain a number of sequence motifs that occur frequently in many MARs identified in other eukaryotes. However, these motifs occurred as frequently in the trs elements as in randomly generated sequences with the same A+T content. trs1 and 3 were shown to be present as single copies in the T. reesei genome. The presence of the trs elements in transforming plasmids enhanced the frequency of integrative transformation of T. reesei up to five fold over plasmids without a trs. No evidence was obtained to suggest that the trs elements promoted efficient replication of plasmids in T. reseei. A mechanism for the enhancement of transformation frequency by the trs elements is proposed. Received: 1 March 1997 / Accepted: 13 May 1997  相似文献   
2.
The human blood-brain barrier glucose transport protein (GLUT1) forms homodimers and homotetramers in detergent micelles and in cell membranes, where the GLUT1 oligomeric state determines GLUT1 transport behavior. GLUT1 and the neuronal glucose transporter GLUT3 do not form heterocomplexes in human embryonic kidney 293 (HEK293) cells as judged by co-immunoprecipitation assays. Using homology-scanning mutagenesis in which GLUT1 domains are substituted with equivalent GLUT3 domains and vice versa, we show that GLUT1 transmembrane helix 9 (TM9) is necessary for optimal association of GLUT1-GLUT3 chimeras with parental GLUT1 in HEK cells. GLUT1 TMs 2, 5, 8, and 11 also contribute to a less abundant heterocomplex. Cell surface GLUT1 and GLUT3 containing GLUT1 TM9 are 4-fold more catalytically active than GLUT3 and GLUT1 containing GLUT3 TM9. GLUT1 and GLUT3 display allosteric transport behavior. Size exclusion chromatography of detergent solubilized, purified GLUT1 resolves GLUT1/lipid/detergent micelles as 6- and 10-nm Stokes radius particles, which correspond to GLUT1 dimers and tetramers, respectively. Studies with GLUTs expressed in and solubilized from HEK cells show that HEK cell GLUT1 resolves as 6- and 10-nm Stokes radius particles, whereas GLUT3 resolves as a 6-nm particle. Substitution of GLUT3 TM9 with GLUT1 TM9 causes chimeric GLUT3 to resolve as 6- and 10-nm Stokes radius particles. Substitution of GLUT1 TM9 with GLUT3 TM9 causes chimeric GLUT1 to resolve as a mixture of 6- and 4-nm particles. We discuss these findings in the context of determinants of GLUT oligomeric structure and transport function.  相似文献   
3.
Spindly is a dynein adaptor involved in chromosomal segregation during cell division. While Spindly's N-terminal domain binds to the microtubule motor dynein and its activator dynactin, the C-terminal domain (Spindly-C) binds its cargo, the ROD/ZW10/ZWILCH (RZZ) complex in the outermost layer of the kinetochore. In humans, Spindly-C binds to ROD, while in C. elegans Spindly-C binds to both Zwilch (ZWL-1) and ROD-1. Here, we employed various biophysical techniques to characterize the structure, dynamics and interaction sites of C. elegans Spindly-C. We found that despite the overall disorder, there are two regions with variable α-helical propensity. One of these regions is located in the C-terminal half and is compact; the second is sparsely populated in the N-terminal half. The interactions with both ROD-1 and ZWL-1 are mostly mediated by the same two sequentially remote disordered segments of Spindly-C, which are C-terminally adjacent to the helical regions. The findings suggest that the Spindly-C binding sites on ROD-1 in the ROD-1/ZWL-1 complex context are either shielded or conformationally weakened by the presence of ZWL-1 such that only ZWL-1 directly interacts with Spindly-C in C. elegans  相似文献   
4.
Transport of GABA at the Blood-CSF Interface   总被引:2,自引:1,他引:1  
Abstract: The entry of GABA into cerebrospinal fluid (CSF) was studied in dogs anesthetized with pentobarbital and relaxed with suxamethonium. GABA was administered intravenously as a priming dose and subsequent maintenance infusion to compensate for the rapid elimination of the amino acid. Steady state concentrations of GABA in CSF were reached between 10 and 60 min after injection, the rate of entry tending to decrease with increasing plasma levels. During steady state conditions CSF concentrations showed great interin-dividual differences and varied between 0.03 and 5.1% of those in plasma. Probenecid and sodium valproate considerably enhanced the CSF/plasma concentration ratio of GABA. When GABA was directly injected into the liquor space, probenecid slowed down the elimination of GABA from CSF. The results suggest a transport of GABA into and out of CSF, the outward transport being inhibited by probenecid and sodium valproate.  相似文献   
5.
The evolutionarily broad family nucleobase-cation symporter-2 (NCS2) encompasses transporters that are conserved in binding site architecture but diverse in substrate selectivity. Putative purine transporters of this family fall into one of two homology clusters: COG2233, represented by well studied xanthine and/or uric acid permeases, and COG2252, consisting of transporters for adenine, guanine, and/or hypoxanthine that remain unknown with respect to structure-function relationships. We analyzed the COG2252 genes of Escherichia coli K-12 with homology modeling, functional overexpression, and mutagenesis and showed that they encode high affinity permeases for the uptake of adenine (PurP and YicO) or guanine and hypoxanthine (YjcD and YgfQ). The two pairs of paralogs differ clearly in their substrate and ligand preferences. Of 25 putative inhibitors tested, PurP and YicO recognize with low micromolar affinity N6-benzoyladenine, 2,6-diaminopurine, and purine, whereas YjcD and YgfQ recognize 1-methylguanine, 8-azaguanine, 6-thioguanine, and 6-mercaptopurine and do not recognize any of the PurP ligands. Furthermore, the permeases PurP and YjcD were subjected to site-directed mutagenesis at highly conserved sites of transmembrane segments 1, 3, 8, 9, and 10, which have been studied also in COG2233 homologs. Residues irreplaceable for uptake activity or crucial for substrate selectivity were found at positions occupied by similar role amino acids in the Escherichia coli xanthine- and uric acid-transporting homologs (XanQ and UacT, respectively) and predicted to be at or around the binding site. Our results support the contention that the distantly related transporters of COG2233 and COG2252 use topologically similar side chain determinants to dictate their function and the distinct purine selectivity profiles.  相似文献   
6.
7.
A new method for the analysis of NMR data in terms of the solution structure of proteins has been developed. The method consists of two steps: first a systematic search of the conformational space to define the region allowed by the initial set of experimental constraints, and second, the narrowing of this region by the introduction of additional constraints and optional refinement procedures. The search of the conformational space is guided by heuristics to make it computationally feasible. The method is therefore called the heuristic refinement method and is coded in an expert system called PROTEAN. The paper describes the validation of the first step of the method using an artificial NMR data set generated from the known crystal structure of sperm whale carbon monoxymyoglobin. It is shown that the initial search procedure yields a low-resolution structure of the myoglobin molecule, accurately reproducing its main topological features, and that the precision of the structure depends on the quality of the initial data set.  相似文献   
8.
Iron is an essential element for diverse biological functions. In mammals, the majority of iron is enclosed within a single prosthetic group: heme. In metazoans, heme is synthesized via a highly conserved and coordinated pathway within the mitochondria. However, iron is acquired from the environment and subsequently assimilated into various cellular pathways, including heme synthesis. Both iron and heme are toxic but essential cofactors. How is iron transported from the extracellular milieu to the mitochondria? How are heme and heme intermediates coordinated with iron transport? Although recent studies have answered some questions, several pieces of this intriguing puzzle remain unsolved.  相似文献   
9.
Summary Pollen mother cells at early meiotic prophase fromFritillaria lanceolata, F. mutica, Tulbaghia violacea, the lily “Formobel”,Triticum aegilopoides, T. dicoccoides, T. aestivum and synaptic and asynaptic forms ofT. durum were studied in thin sections with the electron microscope (a) in relation to distribution of nuclear pores (b) in respect of fine structure of the pore complex in those of the first four. The pores were distributed in random clusters during leptotene to pachytene in all plants, except in the two forms ofT. durum where there were either no pores or so few that they were not detectable. Probably correlated with this, the two membranes of the nuclear envelope were often widely separated and frequently sacculated. No pores were seen at leptotene in the part of the envelope to which, in theFritillarias and lily, the nucleolus was adpressed at this time. Evidence supporting a recent model which proposes that annuli are composed of three rings of eight granular subunits was obtained. These subunits as well as a dense central element, observed in most pores, were composed of filaments about 3 nm in diameter and evidently protein in character. There was evidence of a continuity between filaments in the central element and those in the rings of subunits which encircle the pore aperture at both the nuclear and cytoplasmic sides of the pore. In profiles of pores knobbed filaments were sometimes seen extending laterally from the pore wall into the perinuclear space at two sides. Questions concerning the role of the annulus are discussed. The author wish to thank Mr. R. F. Scott for construction to the model.  相似文献   
10.
Addition of a metabolizable substrate (glucose, ethanol and, to a degree, trehalose) to non-growing baker's yeast cells causes a boost of protein synthesis, reaching maximum rate 20 min after addition of glucose and 40–50 min after ethanol or trehalose addition. The synthesis involves that of transport proteins for various solutes which appear in the following sequence: H+, l-proline, sulfate, l-leucine, phosphate, α-methyl-d-glucoside, 2-aminoisobutyrate. With the exception of the phosphate transport system, the Kt of the synthesized systems is the same as before stimulation. Glucose is usually the best stimulant, but ethanol matches it in the case of sulfate and exceeds it in the case of proline. This may be connected with ethanol's stimulating the synthesis of transport proteins both in mitochondria and in the cytosol while glucose acts on cytosolic synthesis alone. The stimulation is often repressed by ammonium ions (leucine, proline, sulfate, H+), by antimycin (proline, trehalose, sulfate, H+), by iodoacetamide (all systems tested), and by anaerobic preincubation (leucine, proline, trehalose, sulfate). It is practically absent in a respiration-deficient petite mutant, only little depressed in the op1 mutant lacking ADP/ATP exchange in mitochondria, but totally suppressed (with the exception of transport of phosphate) in a low-phosphorus strain. The addition of glucose causes a drop in intracellular inorganic monophosphate by 30%, diphosphate by 45%, ATP by 70%, in total amino acids by nearly 50%, in transmembrane potential (absolute value) by about 50%, an increase of high-molecular-weight polyphosphate by 65%, of total cAMP by more than 100%, in the endogenous respiration rate by more than 100%, and a change of intracellular pH from 6.80 to 7.05. Ethanol caused practically no change in ATP, total amino acids, endogenous respiration, intracellular pH or transmembrane potential; a slight decrease in inorganic monophosphate and diphosphate and a sizeable increase in high-molecular-weight polyphosphate. The synthesis of the various transport proteins thus appears to draw its energy from different sources and with different susceptibility to inhibitors. It is much more stimulated in facultatively aerobic species (Saccharomyces cerevisiae, Endomyces magnusii) than in strictly aerobic ones (Rhodotorula glutinis, Candida parapsilosis) where an inhibition of transport activity is often observed after preincubation with metabolizable substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号