首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  2023年   1篇
  2019年   1篇
  2015年   1篇
  2011年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
  1996年   1篇
  1990年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
We characterized eight polymorphic microsatellites in the Scotia icefish Chaenocephalus aceratus (Perciformes, Notothenioidei, Channichthyidae) that is endemic of Southern Ocean waters surrounding the tip of the Antarctic Peninsula. Microsatellites were isolated from a partial genomic library enriched for an AC motif. The number of alleles ranged from two to 19 with a mean observed hererozygosity of 0.71. Loci were in Hardy–Weinberg equilibrium and no evidence for linkage disequilibrium was found. These molecular markers will be useful to investigate Scotia icefish genetic structure, possibly providing insights on its effective population size and demographic history.  相似文献   
2.
The notothenioid family Bathydraconidae is a poorly understood family of fishes endemic to the Southern Ocean. There is especially little information on Akarotaxis nudiceps, one of the deepest-dwelling and least fecund bathydraconid species. Using genetic and morphological data, we document and describe the larval stages of this unique species, offer a novel characteristic to distinguish it from the morphologically similar bathydraconid Prionodraco evansii and use the sampling locations to infer a possible spawning area of A. nudiceps along the western Antarctic Peninsula. These results provide important baseline information for locating, identifying and studying the biology of A. nudiceps, an important component of the Southern Ocean ecosystem.  相似文献   
3.
Amino acid sequences of α- and β-chains of human hemoglobin and of hemoglobins of coelacanth and 24 teleost fish species, including 11 antarctic and two temperate Notothenioidei, were analyzed using maximum parsimony. Trees were derived for the α- and β-chains separately and for tandemly arranged sequences, using the human and coelacanth sequences as outgroups in all analyses. The topologies of the trees of the α-and β-chains are highly congruent and indicate a specific pattern of gene duplications and gene expression of teleost hemoglobins which has not yet been investigated into more detail. The Notothenioid fish generally contain a single major hemoglobin and often a second minor component. The α- and β-chains of the major components form a monophyletic group in all investigated trees, with the nonantarctic Pseudaphritis as their sister taxon. The minor chains also are a monophyletic group and form an unresolved cluster with the major chains and the hemoglobins of tuna and red gurnard. The Notothenioid families Nototheniidae and Bathydraconidae appear to be paraphyletic. Received: 26 March 1997 / Accepted: 7 May 1997  相似文献   
4.
5.
6.
Viscosity of whole blood and plasma from Antarctic fishes were compared over a temperature range of −1.5 to 5°C; human samples and water provided reference values. Blood viscosity of nototheniids was greater than that of the haemoglobinless icefish, reflecting differences in packed cell volume, being 5.27 v. 3.27 cP at 0°C for Notothenia coriiceps and Chaenocephalus aceratus , respectively. The reduction in MCHC, rather than haematocrit, in nototheniids suggests that selection pressure has not acted at the level of oxygen transport. However, icefish plasma viscosity was similar to human, but greater than that of Notothenia spp., suggesting that viscometric influences on cardiac afterload may be adaptive for the latter. Indeed, handling stress induced a significant increase in viscosity of both whole blood and plasma which may impair cardiovascular performance. Such a response was not observed in icefish, and in view of the large blood vessels it is unlikely that viscosity plays any significant role in limiting activity of this species.  相似文献   
7.
This mini-review makes a survey and a summary of some major issues concerning the chromosomal organisation of ribosomal genes in fish genomes, by using Notothenioidei as the model. The increasing body of information, published during the last two decades on the chromosomal mapping of the two ribosomal genes classes (45S rDNA and 5S rDNA) in notothenioids, makes it possible to recognise the main evolutionary trends across the phylogeny of the group. As one of the major features, the rDNA clusters are organised in a single chromosomal locus in most of the species. This locus is located at different positions along the chromosomes in the basal groups (non-Antarctic Clade), whereas it maintains a strongly conserved location in the cold-adapted species (Antarctic Clade). Important structural changes, leading to the co-localisation of the two ribosomal gene classes, occurred early in the notothenioid phylogeny, perhaps in the common ancestor of the Eleginopidae and Nototheniidae. The cytogenetic evidences indicate that an increased amount of ribosomal genes, organised in two large chromosomal loci, is present in the giant Antarctic fish Dissostichus mawsoni. This gain in rRNA genes is an important genomic change, having possible implications for the fitness of this notothenioid fish that combines large size, pelagic lifestyle and cold-adaptation.  相似文献   
8.
Early life history strategies of notothenioids at South Georgia   总被引:4,自引:0,他引:4  
Antarctic notothenioid early life history strategies are examined in general and then for common species at South Georgia. Channichthyids, bathydraconids, artedidraconids and some nototheniids have large eggs 3·0–4·9 mm whereas other nototheniids and arpagiferids have smaller eggs 1·6–2·7 mm. At South Georgia the larvae of species with large eggs hatched between August (late winter) and late November (late spring) at 11–16 mm standard length ( L s). Larvae of species with small eggs hatched mainly during October and December at 4.5–9 mm L s. Most of the larvae of all species attain urostyle flexion between October and January, and develop to the end of the larval stage between November and May. The duration of the larval stage varies from 2 months in species with smaller larvae to 6 months for some of the species with larger larvae. Two nototheniid species develop to the early juvenile stage before a channichthyid and a bathydraconid that hatch around 2 months earlier. During their first winter, the early-juveniles of most species with large eggs are pelagic, whereas those of species with small eggs may be pelagic or demersal. Four groups of strategies are proposed based on egg size and the winter ecotype of the early-juvenile stage.  相似文献   
9.
The radiation of notothenioid fishes (order Perciformes) in the Southern Ocean provides a model system for investigating evolution and adaptation to a low temperature environment. The Notothenioid fishes comprising eight families, 43 genera and 122 species dominate the fish fauna in Antarctica. The diversification of the clade probably began 15–20 million years ago after the formation of the Antarctic Polar Front. The radiation was, therefore, associated with climatic cooling down to the present day temperature of −1.86 °C. Origins and Evolution of the Antarctic Biota Geological Society Special Publication No. 47, Geological Society of London. pp. 253–268). The success of the group has been closely linked with the evolution of glycopeptide and peptide antifreezes, which are amongst the most abundant proteins in blood and interstitial fluid. The radiation of the clade has been associated with disaptation (evolutionary loss of function) and recovery. For example, it is thought that the icefishes (Channichyidae) lost haemoglobin through a single mutational event leading to the deletion of the entire β-globin gene and the 5′ end of the linked α-globin gene, resulting in compensatory adaptations of the cardiovascular system. Phylogenetically based statistical methods also indicate a progressive and dramatic reduction in the number of skeletal muscle fibres (FNmax) at the end of the recruitment phase of growth in basal compared to derived families. The reduction in FNmax is associated with a compensatory increase in the maximum fibre diameter, which can reach 100 μm in slow and 600 μm in fast muscle fibres. At −1 to 0 °C, the oxygen consumption of isolated mitochondria per mg mitochondrial protein shows no evidence of up-regulation relative to mitochondria from temperate and tropical Perciform fishes. The mitochondria content of slow muscle fibres in Antarctic notothenioids is towards the upper end of the range reported for teleosts with similar lifestyles, reaching 50% in Channichthyids. High mitochondrial densities facilitate ATP production and oxygen diffusion through the membrane lipid compartment of the fibre. Modelling studies suggest that adequate oxygen flux in the large diameter muscle fibres of notothenioids is possible because of the reduced metabolic demand and enhanced solubility of oxygen associated with low temperature. At the whole animal level size-corrected resting metabolic rate fits on the same temperature relationship as for Perciformes from warmer climates. It seems likely that the additional energetic costs associated with antifreeze synthesis and high mitochondrial densities are compensated for by reductions in other energy requiring processes: a hypothesis that could be tested with detailed energy budget studies. One plausible candidate is a reduction in membrane leak pathways linked to the loss of muscle fibres, which would serve to minimise the cost of maintaining ionic gradients.  相似文献   
10.
Rolling-circle (RC) eukaryotic transposons, known as helitrons, are found in a wide range of organisms, from protist to mammals. Autonomous helitrons have a distinctive open reading frame (ORF) encoding a polypeptide that contains typical domains for RC replication (RCR): the Rep (RCR initiator) and the DNA helicase domains. These elements are believed to have an important role in the host genome evolution, owing to their frequent capture of host genes, some of which can evolve into novel genes or become essential for helitron transposition. We conducted a molecular analysis of the suborder Notothenioidei, a group of Perciformes that currently dominate the Antarctic waters by virtue of their remarkable cold-adaptation ability. A novel helitron from the genome of the icefish species Chionodraco hamatus, belonging to the Channichthyidae, the most derived Notothenioids family, was isolated, characterized and designated as HeliNoto (8.9 kb). Its ORF was compared to homologous sequences from different species in a comprehensive phylogenetic analysis. For the first time the putative functional domains of a helitron were subjected to a well accurate structural analysis including chromosomal localization. Finally, the distribution of HeliNoto among Notothenioids was investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号