首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2019年   3篇
  2013年   1篇
  2009年   2篇
  2005年   1篇
  2004年   2篇
  2001年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Published biological data suggest that the methyl erythritol phosphate (MEP) pathway, a non-mevalonate isoprenoid biosynthetic pathway, is essential for certain bacteria and other infectious disease organisms. One highly conserved enzyme in the MEP pathway is 2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF). Fragment-bound complexes of IspF from Burkholderia pseudomallei were used to design and synthesize a series of molecules linking the cytidine moiety to different zinc pocket fragment binders. Testing by surface plasmon resonance (SPR) found one molecule in the series to possess binding affinity equal to that of cytidine diphosphate, despite lacking any metal-coordinating phosphate groups. Close inspection of the SPR data suggest different binding stoichiometries between IspF and test compounds. Crystallographic analysis shows important variations between the binding mode of one synthesized compound and the pose of the bound fragment from which it was designed. The binding modes of these molecules add to our structural knowledge base for IspF and suggest future refinements in this compound series.  相似文献   
2.
A series of N-alkoxy analogs of a l-leucine ethyl ester phosphonodiamidate prodrug of a fosmidomycin surrogate were synthesized and investigated for their ability to inhibit in vitro growth of P. falciparum and M. tuberculosis. These compounds originate by merging a previously reported successful phosphonate derivatisation with favorable modifications of the hydroxamate moiety. None of the synthesized compounds showed enhanced activity against either P. falciparum or M. tuberculosis in comparison with the parent free hydroxamate analog.  相似文献   
3.
Chen J  Xiao Y  Di P  Yu X  Chen W  Zhang L 《Molecular biology reports》2009,36(7):1749-1756
The full-length MECPS cDNA sequence (designated as Chmecps, GenBank Accession No.: DQ415658) was isolated by rapid amplification of cDNA ends (RACE) for the first time from Cephalotaxus harringtonia. The full-length cDNA of Chmecps was 1,146 bp containing a 753 bp open reading frame (ORF) encoding a polypeptide of 250 amino acids with a calculated mass of 26.67 kDa and an isoelectric point of 9.35. Comparative and bioinformatics analyses revealed that ChMECPS showed extensive homology with MECPSs from other plant species. Phylogenetic analysis indicated ChMECPS was more ancient than other plant MECPSs. Southern hybridization analysis of the genomic DNA showed that Chmecps was a single copy gene. Tissue expression pattern analysis revealed that ChMECPS expressed strongly in root and leaf, weakly in stem.  相似文献   
4.
The methylerythritol phosphate pathway to isoprenoids, an alternate biosynthetic route present in many bacteria, algae, plants, and the malarial parasite Plasmodium falciparum, has become an attractive target for the development of new antimalarial and antibacterial compounds. The second enzyme in this pathway, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR; EC 1.1.1.267), has been shown to be the molecular target for fosmidomycin, a promising antimalarial drug. This enzyme converts 1-deoxy-D-xylulose 5-phosphate (DXP) into the branched compound 2-C-methyl-D-erythritol 4-phosphate (MEP). The transformation of DXP into MEP requires an isomerization, followed by a NADPH-dependent reduction. The discovery of DXR, its subsequent characterization, and the identification of inhibitors will be presented.  相似文献   
5.
Ubiquinone biosynthesis in microorganisms   总被引:19,自引:0,他引:19  
The quinoid nucleus of the benzoquinone, ubiquinone (coenzyme Q; Q), is derived from the shikimate pathway in bacteria and eukaryotic microorganisms. Ubiquinone is not considered a vitamin since mammals synthesize it from the essential amino acid tyrosine. Escherichia coli and other Gram-negative bacteria derive the 4-hydroxybenzoate required for the biosynthesis of Q directly from chorismate. The yeast, Saccharomyces cerevisiae, can either form 4-hydroxybenzoate from chorismate or tyrosine. However, unlike mammals, S. cerevisiae synthesizes tyrosine in vivo by the shikimate pathway. While the reactions of the pathway leading from 4-hydroxybenzoate to Q are the same in both organisms the order in which they occur differs. The 4-hydroxybenzoate undergoes a prenylation, a decarboxylation and three hydroxylations alternating with three methylation reactions, resulting in the formation of Q. The methyl groups for the methylation reactions are derived from S-adenosylmethionine. While the prenyl side chain is formed by the 2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway in E. coli, it is formed by the mevalonate pathway in the yeast.  相似文献   
6.
A series of eleven double prodrug derivatives of a fosmidomycin surrogate were synthesized and investigated for their ability to inhibit in vitro growth of P. falciparum and M. tuberculosis. A pivaloyloxymethyl (POM) phosphonate prodrug modification was combined with various prodrug derivatisations of the hydroxamate moiety. The majority of compounds showed activity comparable with or inferior to fosmidomycin against P. falciparum. N-benzyl substituted carbamate prodrug 6f was the most active antimalarial analog with an IC50 value of 0.64?µM. Contrary to fosmidomycin and parent POM-prodrug 5, 2-nitrofuran and 2-nitrothiophene prodrugs 6i and 6j displayed promising antitubercular activities.  相似文献   
7.
Recent advances in the proteomic field have allowed high-throughput experiments to be conducted on chloroplast samples. Many proteomic investigations have focused on either whole chloroplast or sub-plastidial fractions. To date, the Plant Protein Database (PPDB, Sun et al., 2009) presents the most exhaustive chloroplast proteome available online. However, the accurate localization of many proteins that were identified in different sub-plastidial compartments remains hypothetical. Ferro et al. (2009) went a step further into the knowledge of Arabidopsis thaliana chloroplast proteins with regards to their accurate localization within the chloroplast by using a semi-quantitative proteomic approach known as spectral counting. Their proteomic strategy was based on the accurate mass and time tags (AMT) database approach and they built up AT_CHLORO, a comprehensive chloroplast proteome database with sub-plastidial localization and curated information on envelope proteins. Comparing these two extensive databases, we focus here on about 100 enzymes involved in the synthesis of chloroplast-specific isoprenoids. Well known pathways (i.e. compartmentation of the methyl erythritol phosphate biosynthetic pathway, of tetrapyrroles and chlorophyll biosynthesis and breakdown within chloroplasts) validate the spectral counting-based strategy. The same strategy was then used to identify the precise localization of the biosynthesis of carotenoids and prenylquinones within chloroplasts (i.e. in envelope membranes, stroma, and/or thylakoids) that remains unclear until now.  相似文献   
8.
Bajguz A  Asami T 《Planta》2004,218(5):869-877
Treatment of cultured Chlorella vulgaris Beijerinck cells with 0.1–10 M brassinazole (Brz2001), an inhibitor of brassinosteroid (BR) biosynthesis, inhibits their growth during the first 48 h of cultivation in the light. This inhibition is prevented by the co-application of BR. This result suggests that the presence of endogenous BRs during the initial steps of the C. vulgaris cell cycle is indispensable for their normal growth in the light. In darkness, a treatment with 10 nM brassinolide (BL) promotes growth through the first 24 h of culture, but during the following 24 h the cells undergo complete stagnation. Treatment of dark-grown cells with either Brz2001 alone, or a mixture of 10 nM BL and 0.1/10 M Brz2001, also stimulates their growth. The effects of treatment with 10 nM BL mixed with 0.1–10 M of a mevalonate-pathway inhibitor (mevinolin), or a non-mevalonate-pathway inhibitor (clomazone), were also investigated. Mevinolin at these concentrations did not inhibit growth of C. vulgaris; however, clomazone did. Addition of BL overcame the inhibition. These results suggest that the mevalonate pathway does not function in C. vulgaris, and that the non-mevalonate pathway for isopentenyl diphosphate biosynthesis is responsible for the synthesis of one of the primary precursors in BR biosynthesis.Abbreviations Brz Brassinazole - BL Brassinolide - BR Brassinosteroid - Clo Clomazone - DMAPP Dimethylallyl diphosphate - IPP Isopentenyl diphosphate - MVA Mevalonic acid - Mev Mevinoline  相似文献   
9.
Fosmidomycin is a natural antibiotic with promising IspC (DXR, 1-deoxy-d-xylulose-5-phosphate reductoisomerase) inhibitory activity. This enzyme catalyzes the first committed step of the non-mevalonate isoprenoid biosynthesis pathway, which is essential in Plasmodium falciparum and Mycobacterium tuberculosis. Mainly as a result of its high polarity, fosmidomycin displays suboptimal pharmacokinetic properties. Furthermore, fosmidomycin is inactive against M. tuberculosis as a result of its inability to penetrate the bacterial cell wall. Temporarily masking the phosphonate moiety as a prodrug has the potential to solve both issues. We report the application of two amino acid based prodrug approaches on a fosmidomycin surrogate. Conversion of the phosphonate moiety into tyrosine-derived esters increases the in vitro activity against asexual blood stages of P. falciparum, while phosphonodiamidate prodrugs display promising antitubercular activities. Selected prodrugs were tested in vivo in a P. berghei malaria mouse model. These results indicate good in vivo antiplasmodial potential.  相似文献   
10.
Biosynthesis of pyrethrin I in seedlings of Chrysanthemum cinerariaefolium   总被引:2,自引:0,他引:2  
The biosynthetic pathway to natural pyrethrins in Chrysanthemum cinerariaefolium seedlings was studied using [1-13C]d-glucose as a precursor, with pyrethrin I isolated using HPLC from a leaf extract. The 13C NMR spectrum of pyrethrin I from the precursor-administered seedlings indicated that the acid moiety was biosynthesized from d-glucose via 2-C-methyl-d-erythritol 4-phosphate, whereas the alcohol moiety was possibly biosynthesized from linolenic acid.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号