首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2013年   9篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Lack of nighttime blood pressure (BP) reduction by 10–20% from the mean daytime values (dipping) has been described as a distinguishing feature of essential hypertension and associated, also in normotensive subjects, with increased cardiovascular (CV) risk. Mechanisms involved in the loss of the nocturnal dip are still unclear, but involvement of autonomic nervous system (ANS) activity probably plays a crucial role. Sleep is fundamental in modulating ANS activity to maintain the physiological BP circadian rhythm, and for this reason its integrity has been widely investigated in hypertension. We investigated, under controlled conditions, the autonomic control of the CV system through an autonomic reflex screen in the awake condition and by assessment of circadian rhythm–, day-night-, time-, and state-dependent changes of BP and heart rate (HR) and associated sleep parameters in patients with a recent (≤1 yr) diagnosis of essential grade I hypertension naïve of therapy. Fourteen hypertensive patients (6 males, age: 43?±?11 yrs; body mass index [BMI]: 24?±?3?kg/m2) were compared with 28 healthy controls matched for sex, age, BMI (2 controls/patient) for cardiovascular reflex and to 8 different subjects from previous controls (6 males), comparable for age and BMI, for the day-night and nighttime CV profiles during two consecutive nights. The cardiovascular reflex screen data showed increased sympathetic effect in hypertensive patients, represented by higher overshoot of BP after Valsalva maneuver. Nighttime sleep architecture during the dark period in terms of duration, representation of sleep stages, sleep fragmentation, and incidence of arousals—periodic limb movements in sleep (PLMS) and PLMS arousals—was similar in patients and controls. Hypertensive patients displayed higher 24-h BP and HR values, but their sleep-related BP decrease was significantly reduced compared with controls. The circadian rhythms of BP and HR were intact and similar in patients and controls, coupling with the expected physiological peak time. BP and HR showed normal state-dependent modulation in hypertensive patients that, however, was higher in all sleep stages compared with controls. The lowering of systolic blood pressure (SBP) during non–rapid eye movement (NREM) sleep stages 1 and 2 and REM sleep, relative to daytime wake values, was significantly attenuated in the hypertensive group, whereas it was comparable to controls during slow-wave sleep. In hypertensive patients, analysis of sleep and CV parameters in the 90?min following sleep onset and preceding morning awakening showed normal depressor effect during the first part of the night after sleep onset and significantly higher BP rise in the hours preceding morning awakening. These findings were associated with comparable sleep architecture, sleep fragmentation, incidence of arousals, and PLMS and PLMS arousals in patients and controls. Our data suggest that drug-naïve essential grade I hypertension is associated with signs of increased vascular sympathetic response to standardized stress of the Valsalva maneuver during the awake condition, and during sleep with a non-dipping BP profile plus higher BP surge preceding morning awakening, assessable only by around-the-clock ambulatory BP monitoring, both representing additional CV risk already in early-stage hypertension and, therefore, requiring proper selection of pharmacological treatment. (Author correspondence: )  相似文献   
2.
《Chronobiology international》2013,30(8):1629-1651
Clinical studies have documented morning-evening, administration-time differences of several different classes of hypertension medications in blood pressure (BP)-lowering efficacy, duration of action, safety profile, and/or effects on the circadian BP pattern. In spite of these published findings, most hypertensive subjects, including those under combination therapy, are instructed by their physicians and pharmacists to ingest all of their BP-lowering medications in the morning. The potential differential reduction of cardiovascular (CVD) morbidity and mortality risk by a bedtime versus upon-awakening treatment schedule has never been evaluated prospectively. The prospective MAPEC study was specifically designed to test the hypothesis that bedtime chronotherapy with ≥1 hypertension medications exerts better BP control and CVD risk reduction than conventional therapy, i.e., all medications ingested in the morning. A total of 2156 hypertensive subjects, 1044 men/1112 women, 55.6?±?13.6 (mean?±?SD) yrs of age, were randomized to ingest all their prescribed hypertension medications upon awakening or ≥1 of them at bedtime. At baseline, BP was measured at 20-min intervals from 07:00 to 23:00?h and at 30-min intervals at night for 48?h. Physical activity was simultaneously monitored every min by wrist actigraphy to accurately determine the beginning and end of daytime activity and nocturnal sleep. Identical assessment was scheduled annually and more frequently (quarterly) if treatment adjustment was required. Despite lack of differences in ambulatory BP between groups at baseline, subjects ingesting medication at bedtime showed at their last available evaluation significantly lower mean sleep-time BP, higher sleep-time relative BP decline, reduced prevalence of non-dipping (34% versus 62%; p?<?.001), and higher prevalence of controlled ambulatory BP (62% versus 53%; p?<?.001). After a median follow-up of 5.6 yrs, subjects ingesting ≥1 BP-lowering medications at bedtime exhibited a significantly lower relative risk of total CVD events than those ingesting all medications upon awakening (0.39 [0.29–0.51]; number of events 187 versus 68; p?<?.001). The difference between the treatment-time groups in the relative risk of major events (including CVD death, myocardial infarction, ischemic stroke, and hemorrhagic stroke) was also highly statistically significant (0.33 [0.19–0.55]; number of events: 55 versus 18; p?<?.001). The progressive decrease in asleep BP and increase in sleep-time relative BP decline towards a more normal dipping pattern, two novel therapeutic targets requiring proper patient evaluation by ambulatory BP, were best achieved with bedtime therapy, and they were the most significant predictors of event-free survival. Bedtime chronotherapy with ≥1 BP-lowering medications, compared to conventional upon-waking treatment with all medications, more effectively improved BP control, better decreased the prevalence of non-dipping, and, most importantly, significantly reduced CVD morbidity and mortality. (Author correspondence: )  相似文献   
3.
《Chronobiology international》2013,30(1-2):280-314
Specific features of the 24-h blood pressure (BP) pattern are linked to progressive injury of target tissues and risk of cardiovascular disease (CVD) events. Several studies have consistently shown an association between blunted asleep BP decline and risk of fatal and nonfatal CVD events. Thus, there is growing focus on ways to properly control BP during nighttime sleep as well as during daytime activity. One strategy, termed chronotherapy, entails the timing of hypertension medications to endogenous circadian rhythm determinants of the 24-h BP pattern. Significant and clinically meaningful treatment-time differences in the beneficial and/or adverse effects of at least six different classes of hypertension medications, and their combinations, are now known. Generally, calcium channel blockers (CCBs) are more effective with bedtime than morning dosing, and for dihydropyridine derivatives bedtime dosing significantly reduces risk of peripheral edema. The renin-angiotensin-aldosterone system is highly circadian rhythmic and activates during nighttime sleep. Accordingly, evening/bedtime ingestion of the angiotensin-converting enzyme inhibitors (ACEIs) benazepril, captopril, enalapril, lisinopril, perindopril, quinapril, ramipril, spirapril, trandolapril, and zofenopril exerts more marked effect on the asleep than awake systolic (SBP) and diastolic (DBP) BP means. Likewise, the bedtime, in comparison with morning, ingestion schedule of the angiotensin-II receptor blockers (ARBs irbesartan, olmesartan, telmisartan, and valsartan exerts greater therapeutic effect on asleep BP, plus significant increase in the sleep-time relative BP decline, with the additional benefit, independent of drug terminal half-life, of converting the 24-h BP profile into a more normal dipping pattern. This is the case also for the bedtime versus upon-awakening regimen of combination ARB-CCB, ACEI-CCB, and ARB-diuretic medications. The chronotherapy of conventional hypertension medications constitutes a new and cost-effective strategy for enhancing the control of daytime and nighttime SBP and DBP levels, normalizing the dipping status of their 24-h patterning, and potentially reducing the risk of CVD events and end-organ injury, for example, of the blood vessels and tissues of the heart, brain, kidney, and retina. (Author correspondence: )  相似文献   
4.
Administration of angiotensin receptor blockers at bedtime results in greater reduction of nighttime blood pressure than dosing upon awakening, independent of the terminal half-life of each individual medication. To obtain blood pressure (BP) target goals most patients require treatment with more than one hypertension medication. However, the potential differing effects on BP regulation of combination therapy depending on the time-of-day of administration have scarcely been investigated. Accordingly, the authors prospectively evaluated the administration-time-dependent BP-lowering efficacy of valsartan/hydrochlorothiazide (HCTZ) combination therapy. The authors conducted a randomized, open-label, blinded-endpoint trial on 204 subjects with essential hypertension (95 men/109 women), 49.7?±?11.1 (mean?±?SD) yrs of age. The BP of participants in this trial was not properly controlled with respect to published ambulatory BP criteria after initially randomized to valsartan monotherapy (160?mg/day), whether routinely ingested upon awakening by one group or at bedtime by another group for 12 wks. Thus, HCTZ (12.5?mg/day) was added to valsartan as a single-pill formulation, maintaining the original treatment-time, i.e., upon awakening or at bedtime, of participants of the two groups, for another 12 wks. BP was measured by ambulatory monitoring for 48?h at inclusion and after each 12-wk span of therapy. Physical activity was simultaneously monitored every minute by wrist actigraphy to accurately define the beginning and end of daytime activity and nocturnal sleep so that the respective BP means for every participant at each evaluation could be precisely determined. Combination therapy resulted in a similar statistically significant reduction of the 48-h BP mean from baseline for both treatment-time groups (17.0/11.5?mm Hg in systolic/diastolic BP after combination therapy on awakening; 17.9/12.1?mm Hg reduction after combination treatment at bedtime; p?>?.542 between groups). The awake BP mean was reduced to a comparable extent in both treatment-time groups (p?>?.682). However, bedtime compared to morning dosing better reduced the asleep means of systolic BP (20.1 vs. 16.0?mm Hg; p?=?.015) and pulse pressure (6.5 vs. 4.0?mm Hg; p?=?.007 between groups). Accordingly, the proportion of subjects with a baseline non-dipper BP profile was significantly reduced from 59% to 23% only after bedtime combination treatment (p?<?.001). Moreover, the proportion of subjects with properly controlled ambulatory BP after combination therapy was significantly greater with bedtime than upon-awakening treatment (55 vs. 40%, p?=?.037). The improved efficacy in lowering the asleep BP mean, increased sleep-time relative BP decline, and greater proportion of controlled patients suggest that valsartan/HCTZ combination should be preferably administered at bedtime for treatment of subjects with essential hypertension requiring combination therapy to achieve proper BP control. (Author correspondence: )  相似文献   
5.
《Chronobiology international》2013,30(10):1412-1417
Impaired renal sodium excretion causes sodium retention, which prevents the nocturnal dip in blood pressure (BP); thus, high BP persists until excess sodium is excreted. The authors defined “dipping time” (DT) as the duration until the nocturnal BP falls below 90% of the daytime average. Diuretic (e.g., hydrochlorothiazide [HCTZ]) and angiotensin receptor blocker (ARB) are able to eliminate sodium retention and restore the non-dipper BP rhythm. Reanalysis of two previous studies demonstrate that HCTZ and ARB shortened the DT. Shortening DT correlated directly with the increase in daytime urinary sodium excretion (Study 2). DT can be used as a preliminary indicator of sodium retention. (Author correspondence: )  相似文献   
6.
《Chronobiology international》2013,30(8):1652-1667
Appreciation of chronotherapy in hypertension continues to lag, despite clear demonstrations by many studies of (i) clinically relevant dosing-time differences of the beneficial and adverse effects of most blood pressure (BP) medications and (ii) significant association between reduced sleep-time BP decline of non-dippers and their heightened risk of cardiovascular disease (CVD). The Syst-Eur and HOPE outcome trials showed evening administration of nitrendipine and ramipril in these respective studies impacts sleep-time BP, converting the 24-h BP pattern to a more dipper one and in the HOPE study decreasing CVD risk. The CONVINCE study intended to compare BP control and CVD protection afforded by conventional β-blocker and diuretic medications versus a special drug-delivery verapamil formulation as a bedtime hypertension chronotherapy; however, the trial was terminated prematurely, not based on inadequate performance of the chronotherapy but on a corporate business decision. The just completed MAPEC study is the first trial specifically designed to prospectively test the hypothesis that bedtime administration of ≥1 conventional medications exerts better BP control and CVD risk reduction than the traditional approach of scheduling all medications in the morning. The results of this 5.6-yr median follow-up study establish that bedtime chronotherapy more effectively improves BP control, better decreases prevalence of non-dipping, and, most importantly, best reduces CVD morbidity and mortality. This chronotherapeutic approach to hypertension is justified by the fact that BP is usually lowest at night as is sodium excretion, but when sodium intake is excessive or its daytime excretion hampered, nocturnal BP is adjusted higher, to a level required for compensation overnight, via the pressure/natriuresis mechanism, resulting in non-dipping 24-h BP patterning. In diurnally active persons, the entire circadian BP pattern may be reset to a lower mean level and to a “more normal” day-night variation, simply by enhancing natriuresis during the night—the time-of-day when it can be most effective. A modification as simple and inexpensive as switching ≥1 hypertension medications from morning to evening may be all that is needed to normalize nighttime BP, exerting an effect exactly like sodium restriction. Current clinical concepts such as “normotensive non-dipper” (with higher CVD risk than a hypertensive dipper), broad recommendation of pharmacotherapy with exclusively high “smoothness index” medications (without attention to individual patient needs defined by the features of the 24-h BP pattern), and reliance upon static daytime diagnostic BP thresholds based solely on single office cuff assessment necessitate urgent reconsideration. (Author correspondence: )  相似文献   
7.
To prevent recurrence of cerebrovascular disease (CVD), adequate control of blood pressure (BP) is extremely important for the treatment of hypertensive CVD patients. As absence of the nocturnal fall of BP by the expected 10–20% from daytime levels is reported to exaggerate target organ injury, 24-h ambulatory blood pressure monitoring (ABPM) was conducted, especially to obtain data during nighttime sleep. Forty-eight elderly bedridden chronic phase CVD hypertensive patients (assessed 1–3 mo after CVD accident) participated. As a group, nocturnal BP was higher than diurnal BP, whereas nocturnal pulse rate was lower than diurnal pulse rate. The nocturnal BP fall was blunted in most (~90%) of the patients. These results suggest that to perform a rational drug treatment, it is essential to do 24-h ABPM before initiation of antihypertensive therapy in elderly bedridden hypertensive CVD patients. (Author correspondence: )  相似文献   
8.
Numerous studies have consistently shown an association between blunted sleep-time relative blood pressure (BP) decline (non-dipping) and increased cardiovascular disease (CVD) risk in hypertension. Normotensive persons with a non-dipper BP profile also have increased target organ damage, namely, increased left ventricular mass and relative wall thickness, reduced myocardial diastolic function, increased urinary albumin excretion, increased prevalence of diabetic retinopathy, and impaired glucose tolerance. It remains a point of contention, however, whether the non-dipper BP pattern or just elevated BP, alone, is the most important predictor of advanced target organ damage and future CVD events. Accordingly, we investigated the role of dipping status and ambulatory BP level as contributing factors for CVD morbidity and mortality in the MAPEC (Monitorización Ambulatoria para Predicción de Eventos Cardiovasculares, i.e., Ambulatory Blood Pressure Monitoring for Prediction of Cardiovascular Events) study. We prospectively studied 3344 individuals (1718 men/1626 women), 52.6?±?14.5 (mean?±?SD) yrs of age, during a median follow-up of 5.6 yrs. BP was measured by ambulatory monitoring (ABPM) for 48?h at baseline, and again annually or more frequently (quarterly) if treatment adjustment was required in treated hypertensive patients. At baseline, those with ABPM-substantiated hypertension were randomized to one of two treatment-time regimen groups: (i) ingestion of all prescribed hypertension medications upon awakening or (ii) ingestion of the entire dose of ≥1 of them at bedtime. Those found to be normotensive at baseline were untreated but followed and evaluated by repeated ABPM like the hypertensive patients. Participants were divided into four investigated categories on the basis of dipping status and ambulatory BP: (i) dipper vs. non-dipper, and (ii) normal ambulatory BP if the awake systolic (SBP)/diastolic (DBP) BP means were <135/85?mm Hg and the asleep SBP/DBP means were <120/70?mm Hg, and elevated ambulatory BP otherwise. Cox survival analyses, adjusted for significant confounding variables, documented that non-dippers had significantly higher CVD risk than dippers, whether they had normal (p?=?.017) or elevated ambulatory BP (p?<?.001). Non-dippers with normal awake and asleep SBP and DBP means, who accounted for 21% of the studied population, had similar hazard ratio (HR) of CVD events (1.61 [95% confidence interval, CI: 1.09–2.37]) as dippers with elevated ambulatory BP (HR: 1.54 [95% CI: 1.01–2.36]; p?=?.912 between groups). These results remained mainly unchanged for treated and untreated patients analyzed separately. Our findings document that the risk of CVD events is influenced not only by ambulatory BP elevation, but also by blunted nighttime BP decline, even within the normotensive range, thus supporting ABPM as a requirement for proper CVD risk assessment in the general population. The elevated CVD risk in “normotensive” individuals with a non-dipper BP profile represents a clear paradox, as those persons do not have “normal BP” or low CVD risk. Our findings also indicate the need to redefine the concepts of normotension/hypertension, so far established on the unique basis of BP level, mainly if not exclusively measured at the clinic, independently of circadian BP pattern. (Author correspondence: )  相似文献   
9.
《Chronobiology international》2013,30(1-2):176-191
Some studies based on ambulatory blood pressure (BP) monitoring (ABPM) have reported a reduction in sleep-time relative BP decline towards a more non-dipping pattern in the elderly, but rarely have past studies included a proper comparison with younger subjects, and no previous report has evaluated the potential role of hypertension treatment time on nighttime BP regulation in the elderly. Accordingly, we evaluated the influence of age and time-of-day of hypertension treatment on the circadian BP pattern assessed by 48-h ABPM. This cross-sectional study involved 6147 hypertensive patients (3108 men/3039 women), 54.0?±?13.7 (mean?±?SD) yrs of age, with 2137 (978 men/1159 women) being ≥60 yrs of age. At the time of study, 1809 patients were newly diagnosed and untreated, and 4338 were treated with hypertension medications. Among the later, 2641 ingested all their prescribed BP-lowering medications upon awakening, whereas 1697 ingested the full daily dose of ≥1 hypertension medications at bedtime. Diagnosis of hypertension in untreated patients was based on ABPM criteria, specifically an awake systolic (SBP)/diastolic (DBP) BP mean ≥135/85?mm Hg and/or an asleep SBP/DBP mean ≥120/70?mm Hg. Collectively, older in comparison with younger patients were more likely to have diagnoses of microalbuminuria, chronic kidney disease, obstructive sleep apnea, metabolic syndrome, anemia, and/or obesity. In addition, the group of older vs. younger patients had higher glucose, creatinine, uric acid, triglycerides, and fibrinogen, but lower cholesterol, hemoglobin, and estimated glomerular filtration rate. In older compared with younger patients, ambulatory SBP was significantly higher and DBP significantly lower (p?<?.001), mainly during the hours of nighttime sleep and initial hours after morning awakening. The prevalence of non-dipping was significantly higher in older than younger patients (63.1% vs. 41.1%; p?<?.001). The largest difference between the age groups was in the prevalence of a riser BP pattern, i.e., asleep SBP mean greater than awake SBP mean (19.9% vs. 4.9% in older vs. younger patients, respectively; p?<?.001). The sleep-time relative SBP decline was mainly unchanged until ~40 yrs of age, and then significantly and progressively decreasing with increasing age at a rate of .28%/yr (p?<?.001), reaching a minimum value of 4.38%?±?.47% for patients ≥75 yrs of age. Treated compared with untreated patients showed lower awake and asleep SBP means, although the predictable changes of SBP and DBP with age were equivalent in both groups. As a consequence, there were no significant differences between untreated and treated patients in the changes of the sleep-time relative SBP and DBP declines with age. Additionally, the asleep SBP and DBP means were significantly lower and the sleep-time relative SBP and DBP declines significantly higher at all ages in patients ingesting ≥1 BP-lowering medications at bedtime as compared with those ingesting all medications upon awakening. Our findings document a significantly elevated prevalence of a blunted nighttime BP decline with increasing age ≥40 yrs. The prevalence of a riser BP pattern, associated with highest cardiovascular risk among all possible BP patterns, was 4 times more prevalent in patients ≥60 yrs of age than those <60 yr of age. Most important, there was an attenuated prevalence of a blunted nighttime BP decline at all ages when ≥1 hypertension medications were ingested at bedtime as compared with when all of them were ingested upon awakening. These findings indicate that older age should be included among the conditions for which ABPM is recommended for proper cardiovascular risk assessment. (Author correspondence: )  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号