首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2011年   4篇
  2009年   1篇
  2007年   2篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有30条查询结果,搜索用时 18 毫秒
1.
A procedure for estimating in vivo redox status using EPR and a hydrogen peroxide (H2O2)-dependent spin probe method is described. The mechanism of decreasing spin clearance in the selenium-deficient (SeD) rat is discussed. The in vivo decay constant of the nitroxyl spin probe in the liver region of SeD rats appeared to be slightly lower that of the selenium-adequate control (SeC) group, and was significantly smaller than that of normal rats. Bile H2O2 levels in normal rats were significantly lower than those in SeD rats. The in vivo decay constant of the spin probe in SeD rats depended on the bile H2O2 level. Furthermore, H2O2 was detected in the bile in all SeD rats, whereas bile H2O2 could be detected in only half of the normal rats. It was found that the in vivo decay constant of the spin probe in normal rats also depended on whether bile H2O2 was detected or not. In vivo decay constants were smaller in rats subjected to the surgical operation than in the nonoperated groups. The EPR signal of the nitroxyl radical in the liver homogenate was increased by addition of H2O2, which was administered 30 min before the rat was killed. It appears that H2O2 can oxidize the hydroxylamine formed following reduction of the spin probe in the liver.  相似文献   
2.
Nitroxyl anion or its conjugate acid (NO-/HNO) and nitric oxide (NO) may both have pro-oxidative and cytotoxic properties. Superoxide dismutase (SOD) enzyme has been shown to convert reversibly HNO to NO. Mutations found in the SOD enzyme in some familial amyotrophic lateral sclerosis (ALS) patients affect redox properties of the SOD enzyme in a manner, which may affect the equilibrium between NO and HNO. Therefore, we studied the effects of HNO releasing compound, Angeli's salt (AS), on both motor and sensory functions after intrathecal administration in the lumbar spinal cord of a male rat. These functions were measured by rotarod, spontaneous activity, paw- and tail-flick tests. In addition, we compared the effect of AS to NO releasing papanonoate, old AS solution and sulphononoate in the motor performance test. The effect of intrathecal delivery of AS on the markers of the spinal cord injury and oxidative/nitrosative stress were further studied.

Results: Freshly prepared AS (5 or 10 μmol), but not papanonoate, caused a marked decrease in the rotarod performance 3-7 days after the intrathecal administration. The peak motor deficiency was noted 3 days after AS (5 μmol) delivery. Old, degraded, AS solution and nitrous oxide releasing sulphononoate did not decrease motor performance in the rotarod test. AS did not affect the sensory stimulus evoked responses as measured by the paw-flick and tail-flick tests. Immunohistological examination revealed that AS caused injury related changes in the expression of glial fibrillary acidic protein (GFAP), fibroblast growth factor (FGF-2) and laminins in the spinal cord. Moreover, AS increased nitrotyrosine immunoreactivity in the spinal motor neurons.

Therefore, we conclude that AS, but not NO releasing papanonoate, causes motor neuron injury but does not affect the function of sensory nerves in behavioural tests.  相似文献   
3.
4.
In this study, we investigated the hypothesis that the pro-oxidative properties of Angeli's salt (AS), a nitroxyl anion (HNO/NO -) releasing compound, cause neurotoxicity in dopaminergic neurons. The pro-oxidative properties were demonstrated in vitro by measuring hydroxylation products of salicylate and peroxidation of lipids under various redox conditions. AS (0-1000 μM) released high amounts of hydroxylating species in a concentration dependent manner. AS also increased lipid peroxidation in brain homogenates at concentrations below 100 μM, while inhibiting it at 1000 μM concentration. The AS induced pro-oxidative effects were completely suppressed by copper (II), which converts nitroxyl anion to nitric oxide, as well as by a potent nitroxyl anion scavenger glutathione. Neurotoxicity towards dopaminergic neurons was tested in rat nigrostriatal dopaminergic system in vivo and by using primary mesencephalic dopaminergic neuronal cultures in vitro . Intranigral infusion of AS (0-400 nmol) caused neurotoxicity reflected as a dose dependent decrease of striatal dopamine seven days after treatment. The effect of the 100 nmol dose was more pronounced when measured 50 days after the infusion. Neurotoxicity was also confirmed as a decrease of tyrosine hydroxylase positive neurons in the substantia nigra. Neither sulphononoate, a close structural analog of AS, nor sodiumnitrite caused changes in striatal dopamine, thus reflecting lack of neurotoxicity. In primary dopaminergic neuronal cultures AS reduced [ 3 H] dopamine uptake with concentrations over 200 μM confirming neurotoxicity. In line with the quite low efficacy to increase lipid peroxidation in vitro , infusion of AS into substantia nigra did not cause increased formation of fluorescent products of lipid peroxidation. These results support the hypothesis that AS derived species oxidize critical thiol groups, rather than membrane lipids, potentially leading to protein oxidation/dysfunction and demonstrated neurotoxicity. These findings may have pathophysiological relevance in case of excess formation of nitroxyl anion.  相似文献   
5.
Nitroxyl (HNO) has received recent and significant interest due to its novel and potentially important pharmacology. However, the chemical/biochemical mechanism(s) responsible for its biological activity remain to be established. Some of the most important biological targets for HNO are thiols and thiol proteins. Consistent with this, it was recently reported that HNO inhibits the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein with a catalytically important cysteine thiol at its active site. Interestingly, it was reported that intracellular GAPDH inhibition occurred without significantly altering the cellular thiol redox status of glutathione. Herein, the nature of this reaction specificity was examined. HNO is found to irreversibly inhibit GAPDH in a manner that can be protected against by one of its substrates, glyceraldehyde-3-phosphate (G-3-P). These results are consistent with the idea that HNO has the ability to react with and oxidize a variety of intracellular thiols and the ease or facility of cellular re-reduction of the thiol targets can determine the target specificity.  相似文献   
6.
Xanthine oxidase (XO) was found to convert nitric oxide (NO* ) released from spermine-NONOate to nitroxyl (HNO), the one-electron reduction product of NO*, in the presence of its substrate hypoxanthine under anaerobic conditions. Under these conditions, XO lost its activity. Upon aerobic incubation of XO with its substrate, neither conversion of NO* to HNO nor inactivation of the enzyme was observed. Angeli's salt (an HNO generator) or synthetic peroxynitrite inactivated XO at low concentrations, whereas high concentrations of diethylamine-NONOate (an NO* donor) and SIN-1 (which generates peroxynitrite by releasing both NO* and superoxide) were required to inactivate XO. These results suggest that HNO generated by XO under anaerobic conditions inactivates XO. As both XO and NO* synthase are activated and/or induced in ischemia-reperfusion injury, HNO formed by XO may contribute to pathogenesis by exerting its potent oxidation activity against a variety of biological compounds.  相似文献   
7.
Antioxidant and pro-oxidant activities of flavonoids have been reported. We have studied the effects of 18 flavonoids and related phenolic compounds on DNA damage induced by nitric oxide (NO), peroxynitrite, and nitroxyl anion (NO). Similarly to our previous findings with catecholamines and catechol-estrogens, DNA single-strand breakage was induced synergistically when pBR322 plasmid was incubated in the presence of an NO-releasing compound (diethylamine NONOate) and a flavonoid having an ortho-trihydroxyl group in either the B ring (e.g., epigallocatechin gallate) or the A ring (e.g., quercetagetin). Either NO or any of the above flavonoids alone did not induce strand breakage significantly. However, most of the tested flavonoids inhibited the peroxynitrite-mediated formation of 8-nitroguanine in calf-thymus DNA, measured by a new HPLC-electrochemical detection method, as well as the peroxynitrite-induced strand breakage. NO generated from Angeli’s salt caused DNA strand breakage, which was also inhibited by flavonoids but at only high concentrations. On the basis of these findings, we propose that NO and/or peroxynitrite could be responsible for DNA strand breakage induced by NO and a flavonoid having an ortho-trihydroxyl group. Our results indicate that flavonoids have antioxidant properties, but some act as pro-oxidants in the presence of NO.  相似文献   
8.
Nitroxyl (HNO) has a unique, but varied, set of biological properties including beneficial effects on cardiac contractility and stimulation of glucose uptake by GLUT1. These biological effects are largely initiated by HNO's reaction with cysteine residues of key proteins. The intracellular production of HNO has not yet been demonstrated, but the small molecule, hydroxylamine (HA), has been suggested as possible intracellular source. We examined the effects of this molecule on glucose uptake in L929 fibroblast cells. HA activates glucose uptake from 2 to 5-fold within two minutes. Prior treatment with thiol-active compounds, such as iodoacetamide (IA), cinnamaldehyde (CA), or phenylarsine oxide (PAO) blocks HA-activation of glucose uptake. Incubation of HA with the peroxidase inhibitor, sodium azide, also blocks the stimulatory effects of HA. This suggests that HA is oxidized to HNO by L929 fibroblast cells, which then reacts with cysteine residues to exert its stimulatory effects. The data suggest that GLUT1 is acutely activated in L929 cells by modification of cysteine residues, possibly the formation of a disulfide bond within GLUT1 itself.  相似文献   
9.
The cytotoxicity of a new nitroxyl nitroxide radical, tert-butyl-2 (4,5-dihydrogen-4,4,5,5-tetramethyl-3-O-1H-imidazole-3-cationic-1-oxyl-2-pyrrolidine-1-carboxylic ester (L-NNP) was examined in MCF-7 and MDA-MB-231 cells. L-NNP treatment resulted in a significant growth inhibition in MCF-7 and MDA-MB-231 cells. Compared with control, 10, 30, and 50 μg/ml L-NNP treatments for 48 h induced significant cell and nuclei swelling, and organelle distension. The marked cell death was seen in a concentration- and time-dependant manner in L-NNP treated groups. The L-NNP treated group displayed a concentration-dependant increase in DNA double strand damage compared to the control and the 1 Gy γ-rays exposure groups. These results suggest that L-NNP could result in more lethal genotoxicity than 1 Gy γ-radiation. Based on mitochondrial alteration (membrane potential loss and SDH activity descend), DNA damage, an increase in MDA production, and GSH-PX inactivation, we predicate that L-NNP induces lipid oxidation and oxidative damage in MCF-7 and MDA-MB-231 cells. Since L-NNP initiated a significant increase in reactive oxygen species, which could largely be inhibited by NAC pretreatment, the overall data strongly suggest that the mechanism of cytotoxicity of L-NNP was its ability to act as a strong free radical, and significantly increase intracellular reactive oxygen species production. This led to intracellular oxidative damage, and antioxidant enzyme inactivation, resulting in cell death. We hypothesize that the greater cytotoxicity of L-NNP in MDA-MB-231 cells than in MCF-7 cells might be due to more ROS production in MDA-MB-231 cells, leading to more oxidative damage.  相似文献   
10.
Pentachloronitrosyliridate(III) ([IrCl5(NO)]), the most electrophilic NO+ known to date, can be reduced chemically and/or electrochemically by one or two electrons to produce the NO and HNO/NO forms. The nitroxyl complex can be formed either by hydride attack to the NO+ in organic solvent, or by decomposition of iridium-coordinated nitrosothiols in aqueous solutions, while NO is produced electrochemically or by reduction of [IrCl5(NO)] with H2O2. Both NO and HNO/NO complexes are stable under certain conditions but tend to labilize the trans chloride and even the cis ones after long periods of time. As expected, the NO+ is practically linear, although the IrNO moiety is affected by the counterions due to dramatic changes in the solid state arrangement. The other two nitrosyl redox states comprise bent structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号