首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8088篇
  免费   683篇
  国内免费   1063篇
  2024年   34篇
  2023年   196篇
  2022年   252篇
  2021年   331篇
  2020年   315篇
  2019年   366篇
  2018年   305篇
  2017年   306篇
  2016年   313篇
  2015年   309篇
  2014年   348篇
  2013年   514篇
  2012年   257篇
  2011年   349篇
  2010年   299篇
  2009年   417篇
  2008年   396篇
  2007年   431篇
  2006年   389篇
  2005年   342篇
  2004年   318篇
  2003年   264篇
  2002年   185篇
  2001年   167篇
  2000年   149篇
  1999年   158篇
  1998年   153篇
  1997年   124篇
  1996年   115篇
  1995年   120篇
  1994年   133篇
  1993年   117篇
  1992年   111篇
  1991年   127篇
  1990年   94篇
  1989年   81篇
  1988年   84篇
  1987年   99篇
  1986年   116篇
  1985年   104篇
  1984年   109篇
  1983年   50篇
  1982年   88篇
  1981年   87篇
  1980年   67篇
  1979年   53篇
  1978年   16篇
  1977年   22篇
  1976年   24篇
  1975年   12篇
排序方式: 共有9834条查询结果,搜索用时 31 毫秒
1.
Nitrogen dioxide less than 100 ppm in air induced lipid peroxidation of liposome composed of l-palmitoyl-2-arachidonylphosphatidylcholine as assessed by thiobarbituric acid reactivity. The nitrogen dioxide-induced lipid peroxidation was enhanced by cysteine, glutathione and bovine serum albumin. While the activity of nitrogen dioxide in air to induce single strand breaks of supercoiled plasmid DNA was low, the breaking was remarkably enhanced by cysteine, glutathione and bovine serum albumin. ESR spin trapping using 5,5-dimethyl-1-pyrroline N-oxide showed that certain strong oxidant(s) were generated by interaction of nitrogen dioxide and cysteine. The spin trapping using 3,5-dibromo-4-nitrosobenzene-sulfonate suggested that sulfur-containing radicals were generated by interaction of nitrogen dioxide and cysteine or glutathione. Hence, certain sulfur-containing radicals generated by the interaction which could effectively induce lipid peroxidation and DNA strand breaks.  相似文献   
2.
The ability to metabolically label proteins with 35S-methionine is critical for the analysis of protein synthesis and turnover. Despite the importance of this approach, however, efficient labeling of proteins in vivo is often limited by a low number of available methionine residues, or by deleterious side-effects associated with protein overexpression. To overcome these limitations, we have created a methionine-rich variant of the widely used HA tag, called HAM, for use with ectopically expressed proteins. Here we describe the development of a series of vectors, and corresponding antisera, for the expression and detection of HAM-tagged proteins in mammalian cells. We show that the HAM tag dramatically improves the sensitivity of 35S-methionine labeling, and permits the analysis of Myc oncoprotein turnover even when HAM-tagged Myc is expressed at levels comparable to that of the endogenous protein. Because of the improved sensitivity provided by the HAM tag, the vectors and antisera described here should be useful for the analysis of protein synthesis and destruction at physiological levels of protein expression.  相似文献   
3.
4.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
5.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
6.
Enumeration of denitrifying microbial populations in turf   总被引:2,自引:0,他引:2  
Summary Denitrifer populations of a silt and silt loam soil under a Kentucky bluegrass turf were enumerated using the most probable number (MPN) procedure. The influence of soil texture, soil depth, soil moisture, and additions of nitrate fertilizer on denitrifier populations were determined. Saturated soil conditions increased denitrifier populations 87-fold in the silt soil and 121-fold in the silt loam soil. Denitrifier populations did not differ significantly between soil depths and additions of fertilizer nitrate did not influence populations.  相似文献   
7.
Due to the fact that the flood data series of small drainage basins is relatively short, available data are often not sufficient for flood risk analysis. This presents the problem of risk analysis using very small data samples. One method that can be applied is to regard the available small samples as fuzzy information and optimize them using information diffusion technology to yield analytical results with greater reliability. In this article a risk analysis method based on information diffusion theory is applied to create a new flood risk analysis model. Application of the model is illustrated taking the Jinhuajiang and Qujiang drainage basins as examples. This is a new attempt at applying information diffusion theory in flood risk analysis. Computations based on this analytical flood risk model can yield an estimated flood damage value that is relatively accurate. This study indicates that the aforementioned model exhibits fairly stable analytical results, even when using a small set of sample data. The results also indicate that information diffusion technology is highly capable of extracting useful information and therefore improves system recognition accuracy. This method can be easily applied and the analytical results produced are easy to understand. Results are accurate enough to act as a guide in disaster situations.  相似文献   
8.
9.
10.
Abstract In the field, adult males of the grasshopper Phymateus morbillosus are able to fly for up to 1 min and cover up to c. 100 m, whereas females, although fully winged, are apparently unable to get airborne. Morphometric data indicate that the males are lighter, have longer wings, a higher ratio of flight muscles to body mass, and a lower wing load value than females. It was investigated whether this inability of females to fly is related to fuel storage, flight muscle enzymatic design and/or the presence and quantitative capacity of the endocrine system to mobilize fuels. In both sexes, readily available potential energy substrates are present in the haemolymph in similar concentrations, and the amount of glycogen in flight muscles and fat bodies does not differ significantly between males and females. Mass-specific activities of the enzymes GAPDH (glycolysis), HOAD (fatty acid oxidation) and MDH (citric acid cycle) in flight muscles are significantly lower in females compared with males, and mitochondria are less abundant in the flight muscles of females. There is no significant difference between the ability of the two sexes to oxidize various important substrates. Both sexes contain three adipokinetic peptides in their corpora cardiaca; the amount of each peptide in female grasshoppers is higher than in males.
Thus, despite some differences listed above, both sexes appear to have sufficient substrates and the necessary endocrine complement to engage in flight. It seems more likely, from the morphometric data above, that the chief reason for flightlessness is that P. morbillosus females cannot produce sufficient lift for flight; alternatively, the neuronal functioning associated with the flight muscles may be impaired in females.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号