首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   8篇
  国内免费   3篇
  2023年   3篇
  2022年   6篇
  2021年   9篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   10篇
  2013年   13篇
  2012年   6篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   8篇
  2007年   4篇
  2006年   8篇
  2005年   7篇
  2004年   5篇
  2003年   9篇
  2002年   5篇
  2001年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   4篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1976年   1篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
1.
The origin of nervous systems is a main theme in biology and its mechanisms are largely underlied by synaptic neurotransmission. One problem to explain synapse establishment is that synaptic orthologs are present in multiple aneural organisms. We questioned how the interactions among these elements evolved and to what extent it relates to our understanding of the nervous systems complexity. We identified the human neurotransmission gene network based on genes present in GABAergic, glutamatergic, serotonergic, dopaminergic, and cholinergic systems. The network comprises 321 human genes, 83 of which act exclusively in the nervous system. We reconstructed the evolutionary scenario of synapse emergence by looking for synaptic orthologs in 476 eukaryotes. The Human–Cnidaria common ancestor displayed a massive emergence of neuroexclusive genes, mainly ionotropic receptors, which might have been crucial to the evolution of synapses. Very few synaptic genes had their origin after the Human–Cnidaria common ancestor. We also identified a higher abundance of synaptic proteins in vertebrates, which suggests an increase in the synaptic network complexity of those organisms.  相似文献   
2.
The ATP·Mg-dependent protein phosphatase activating factor (Fa) has been identified and purified to near homogeneity from brain. In this report, as evidenced on SDS-polyacrylamide gel electrophoresis followed by autoradiography, factorFa has further been identified as a cAMP and Ca2+-independent brain kinase that could phosphorylate synapsin I, a neuronal protein that coats synaptic vesicles, binds to cytoskeleton, and is believed to be involved in the modulation of neurotransmission. Kinetic study further indicated that factorFa could phosphorylate synapsin I with a lowK m value of about 2 µM and with a molar ratio of 1 mol of phosphate per mole of protein. Peptide mapping analysis revealed that factorFa specifically phosphorylated the tail region of synapsin I but on a unique site distinct from those phosphorylated by Ca2+/calmodulin-dependent protein kinase II and cAMP-dependent protein kinase, the two well-established synapsin I kinases. Functional study further revealed that factorFa could phosphorylate this unique specific site on the tail region of synapsin I and thereby inhibit cross-linking of synapsin I with microtubules. The results further suggest the possible involvement of factorFa as a synapsin I kinase in the regulation of axonal transport process of synaptic vesicles via the promotion of vesicles motility during neurotransmission.  相似文献   
3.
Summary Three neuronal systems of the pond snail Lymnaea stagnalis were immunocytochemically investigated at the ultrastructural level with the unlabeled peroxidase-antiperoxidase technique. Preliminary electrophysiological and cell-filling investigations have shown that a cluster of neurons which reacts positively with an antiserum against the molluscan cardio-active peptide FMRFamide, sends axons to the penis retractor muscle. In this muscle anti-FMRF-amide (aFM) positive axons form neuro-muscular synapses with (smooth) muscle fibers. The morphological observations suggest the aFM immunoreactive system to be involved in peptidergic neurotransmission. In the right parietal ganglion a large neuron (LYAC) is penetrated by aFM positive axons which form synapse-like structures (SLS) with the LYAC. The assumption that the SLS represent the morphological basis for peptidergic transmission is sustained by the observation that iontophoretical application of synthetic FMRFamide depolarizes the LYAC. The axons of a group of pedal anti-vasopressin (aVP) positive cells run in close vicinity to the cerebral ovulation (neuro-)-hormone producing cell system (CDC system) Synapses or SLS between the two systems were not observed. The fact that (bath) application of arg-vasopressin induces bursting in the CDC, may indicate that the vasopressin-like substance of the aVP cells is released non-synaptically.  相似文献   
4.
5.
Cocaine dependence is a neuropsychiatric disorder in which both environmental and genetic factors are involved. Several processes, that include reward and neuroadaptations, mediate the transition from use to dependence. In this regard, dopamine and serotonin neurotransmission systems are clearly involved in reward and other cocaine‐related effects, whereas neurotrophic factors may be responsible for neuroadaptations associated with cocaine dependence. We examined the contribution to cocaine dependence of 37 genes related to the dopaminergic and serotoninergic systems, neurotrophic factors and their receptors through a case–control association study with 319 single nucleotide polymorphisms selected according to genetic coverage criteria in 432 cocaine‐dependent patients and 482 sex‐matched unrelated controls. Single marker analyses provided evidence for association of the serotonin receptor HTR2A with cocaine dependence [rs6561333; nominal P‐value adjusted for age = 1.9e?04, odds ratio = 1.72 (1.29–2.30)]. When patients were subdivided according to the presence or absence of psychotic symptoms, we confirmed the association between cocaine dependence and HTR2A in both subgroups of patients. Our data show additional evidence for the involvement of the serotoninergic system in the genetic susceptibility to cocaine dependence.  相似文献   
6.
The accumulation and propagation of misfolded proteins in the brain is a pathological hallmark shared by many neurodegenerative diseases, such as the depositions of β-amyloid and hyperphosphorylated tau proteins in Alzheimer''s disease. Initial evidence shows the role of nitric oxide synthases in the development of neurodegenerative diseases. A recent, in an exciting paper (Bourgognon et al. in Proc Natl Acad Sci USA 118, 1–11, 2021. 10.1073/pnas.2009579118) it was shown that the inducible nitric oxide synthase plays an important role in promoting oxidative and nitrergic stress leading to neuroinflammation and consequently neuronal function impairments and decline in synaptic strength in mouse prion disease. In this context, we reviewed the possible mechanisms of nitric oxide synthase in the generation of neurodegenerative diseases.  相似文献   
7.
Dopamine (DA) neurons can release DA not just from axon terminals, but also from their somatodendritic (STD) compartment through a mechanism that is still incompletely understood. Using voltammetry in mouse mesencephalic brain slices, we find that STD DA release has low capacity and shows a calcium sensitivity that is comparable to that of axonal release. We find that the molecular mechanism of STD DA release differs from axonal release with regard to the implication of synaptotagmin (Syt) calcium sensors. While individual constitutive knockout of Syt4 or Syt7 is not sufficient to reduce STD DA release, the removal of both isoforms reduces this release by approximately 50%, leaving axonal release unimpaired. Our work unveils clear differences in the mechanisms of STD and axonal DA release.  相似文献   
8.
Voltage-dependent sodium channels (VDSC) are an important class of ion channels in excitable cells, where they are responsible for the generation and conduction of action potential. In addition, the release of neurotransmitters from nerve terminals is influenced by sodium channel activity. The function of VDSC is subject to modulation by various neurotoxins, such as scorpion toxins, which have long been used as tools in the investigation of neurotransmitter release. This opens an interesting perspective concerning modulation of neurotransmission via pharmacological manipulation of sodium channel properties, which can lead to a better understanding of their physiological and pathological roles. Here we briefly review the studies of neurotoxins acting on sodium channels, focusing primarily on the view of the mechanisms of neurotransmitter release.  相似文献   
9.
It has been hypothesized that in the mature nerve terminal, interactions between synapsin and actin regulate the clustering of synaptic vesicles and the availability of vesicles for release during synaptic activity. Here, we have used immunogold electron microscopy to examine the subcellular localization of actin and synapsin in the giant synapse in lamprey at different states of synaptic activity. In agreement with earlier observations, in synapses at rest, synapsin immunoreactivity was preferentially localized to a portion of the vesicle cluster distal to the active zone. During synaptic activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known function in clustering of vesicles in the reserve pool, synapsin migrates from the synaptic vesicle cluster and participates in the organization of the actin-rich cytomatrix in the endocytic zone during synaptic activity.  相似文献   
10.
Abstract: Molecular cloning has revealed that there are six classes of subunits capable of forming GABA-gated chloride channel receptors. GABAA receptors are composed of α, β, γ, δ, and ε/χ subunits, whereas GABAC receptors appear to contain ρ subunits. However, retinal cells exhibiting GABAC responses express α, β, and ρ subunits, raising the possibility that GABAC receptors may be a mixture of subunit classes. Using in vitro translated protein, we determined that human GABAA receptor subunits α1, α5, and β1 did not coimmunoprecipitate with full-length ρ1, ρ2, or the N-terminal domain of ρ1 that contains signals for ρ-subunit interaction. To explore the molecular mechanism underlying these apparently exclusive combinations, chimeric subunits were created and tested for interaction with the wild-type subunits. Transfer of the N terminus of β1 to ρ1 created a β1ρ1 chimera that coimmunoprecipitated with the α1 subunit but not with the ρ2 subunit. Furthermore, exchanging the N terminus of the ρ1 subunit with the corresponding region of β1 produced a ρ1β1 chimera that interfered with ρ1 receptor expression in Xenopus oocytes, whereas the full-length β1 subunit had no effect. Together, these results indicate that sequences in the N termini direct assembly of ρ subunits and GABAA subunits into GABAC and GABAA receptors, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号