首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
  23篇
  2019年   1篇
  2015年   3篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1988年   1篇
  1982年   1篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
1.
2.
The iron-sulphur cluster-free hydrogenase (Hmd, EC 1.12.98.2) from methanogenic archaea is a novel type of hydrogenase that tightly binds an iron-containing cofactor. The iron is coordinated by two CO molecules, one sulphur and a pyridone derivative, which is linked via a phosphodiester bond to a guanosine base. We report here on the crystal structure of the Hmd apoenzyme from Methanocaldococcus jannaschii at 1.75 A and from Methanopyrus kandleri at 2.4 A resolution. Homodimeric Hmd reveals a unique architecture composed of one central and two identical peripheral globular units. The central unit is composed of the intertwined C-terminal segments of both subunits, forming a novel intersubunit fold. The two peripheral units consist of the N-terminal domain of each subunit. The Rossmann fold-like structure of the N-terminal domain contains a mononucleotide-binding site, which could harbour the GMP moiety of the cofactor. Another binding site for the iron-containing cofactor is most probably Cys176, which is located at the bottom of a deep intersubunit cleft and which has been shown to be essential for enzyme activity. Adjacent to the iron of the cofactor modelled as a ligand to Cys176, an extended U-shaped extra electron density, interpreted as a polyethyleneglycol fragment, suggests a binding site for the substrate methenyltetrahydromethanopterin.  相似文献   
3.
The ability of hydrogenases isolated from Thiocapsa roseopersicina and Lamprobacter modestohalophilus to reduce metal ions and oxidize metals has been studied. Hydrogenases from both phototrophic bacteria oxidized metallic Fe, Cd, Zn and Ni into their ionic forms with simultaneous evolution of molecular hydrogen. The metal oxidation rate decreased in the series Zn>Fe>Cd>Ni and depended on the pH. The presence of methyl viologen in the reaction system accelerated this process. T. roseopersicina and L. modestohalophilus cells and their hydrogenases reduced Ni(II), Pt(IV), Pd(II) or Ru(III) to their metallic forms under H2 atmosphere. These results suggest that metals or metal ions can serve as electron donors or acceptors for hydrogenases from phototrophic bacteria.  相似文献   
4.
5.
Escherichia coli grown under anaerobic conditions in acidic medium (pH 5.5) upon hyperosmotic stress accumulates potassium ions mainly through the Kup system, the functioning of which is associated with proton efflux decrease. It was shown that H+ secretion but not glucose-induced K+ uptake was inhibited by N,N′-dicyclohexylcarbodiimide (DCC). The inhibitory effect of DCC on the H+ efflux was stronger in the trkA mutant with defective potassium transport. The K+ and H+ fluxes depended on the extent of hyperosmotic stress in the absence or presence of DCC. The decrease in external oxidation/reduction potential and H2 liberation insensitive to DCC were recorded. It was found that the atpD mutant with nonfunctional F0F1-ATPase produced a substantial amount of H2, while in the hyc mutant (but not the hyf mutant defective in hydrogenases 3 (Hyd-3) and 4 (Hyd-4)) the H2 production was significantly suppressed. At the same time, the rate of K+ uptake was markedly lower in hyfR and hyfB-R but not in hycE or hyfA-B mutants; H+ transport was lowered and sensitive to DCC in hyf but not in hyc mutants. The results point to the relationship of K+ uptake with the Hyd-4 activity. Novel options of the expression of some hyf genes in E. coli grown at pH 5.5 are proposed. It is possible that the hyfB-R genes expressed under acidic conditions or their gene products interact with the gene coding for the Kup protein or directly with the Kup system.  相似文献   
6.
H2 has a great potential as an ecologically-clean, renewable and capable fuel. It can be mainly produced via hydrogenases (Hyd) by different bacteria, especially Escherichia coli and Rhodobacter sphaeroides. The operation direction and activity of multiple Hyd enzymes in E. coli during mixed-acid fermentation might determine H2 production; some metabolic cross-talk between Hyd enzymes is proposed. Manipulating the activity of different Hyd enzymes is an effective way to enhance H2 production by E. coli in biotechnology. Moreover, a novel approach would be the use of glycerol as feedstock in fermentation processes leading to H2 production. Mixed carbon (sugar and glycerol) utilization studies enlarge the kind of organic wastes used in biotechnology. During photo-fermentation under limited nitrogen conditions, H2 production by Rh. sphaeroides is observed when carbon and nitrogen sources are supplemented. The relationship of H2 production with H+ transport across the membrane and membrane-associated ATPase activity is shown. On the other hand, combination of carbon sources (succinate, malate) with different nitrogen sources (yeast extract, glutamate, glycine) as well as different metal (Fe, Ni, Mg) ions might regulate H2 production. All these can enhance H2 production yield by Rh. sphaeroides in biotechnology Finally, two of these bacteria might be combined to develop and consequently to optimize two stages of H2 production biotechnology with high efficiency transformation of different organic sources.  相似文献   
7.
Jacobi  A.  Rossmann  R.  Böck  A. 《Archives of microbiology》1992,158(6):444-451
The hyp operon of Escherichia coli comprises several genes which are required for the synthesis of all three hydrogenase isoenzymes. Deletions were introduced into each of the hypA-E genes, transferred to the chromosome and the resulting mutants were analysed for hydrogenase 1, 2 and 3 activity. The products of three of the genes, hypB, hypD and hypE were found to be essential for the synthesis of all three hydrogenase isoenzymes. A defect in hypB, as previously observed, could be complemented by high nickel concentrations in the medium, whereas the effects of mutants in the other genes could not. Lesions in hypA prevented development of hydrogenase 3 activity, did not influence the level of hydrogenase 1 but led to a considerable increase in hydrogenase 2 activity although the amount of hydrogenase 2 protein was not drastically altered. Lesions in hypC, on the other hand, led to a reduction of hydrogenase 1 activity and abolished hydrogenase 3 activity. HYPA and HYPC, besides being required for hydrogenase 3 formation, therefore may have a function in modulating the activities of the three isoenzymes with respect to each other and adjusting their levels to the requirement imposed by the physiological situation. Mutations in all five hyp genes prevented the apparent processing of the large subunits of all three hydrogenase isoenzymes. It is concluded that the products of the hypA-E genes play a role in nickel incorporation into hydrogenase apoprotein and/or processing of the constituent subunits of this enzyme. The importance of their roles is also reflected in their phylogenetic conservation in distantly related organisms.  相似文献   
8.
Aims: The aim of this study was to explore and characterize the genetic diversity of [FeFe] hydrogenases in a representative set of strains from Clostridium sp. and to reveal the existence of neither yet detected nor characterized [FeFe] hydrogenases in hydrogen‐producing strains. Methods and Results: The genomes of 57 Clostridium strains (34 different genotypic species), representing six phylogenetic clusters based on their 16S rRNA sequence analysis (cluster I, III, XIa, XIb, XIV and XVIII), were screened for different [FeFe] hydrogenases. Based on the obtained alignments, ten pairs of [FeFe] hydrogenase cluster‐specific degenerate primers were newly designed. Ten Clostridium strains were screened by PCRs to assess the specificity of the primers designed and to examine the genetic diversity of [FeFe] hydrogenases. Using this approach, a diversity of hydrogenase genes was discovered in several species previously shown to produce hydrogen in bioreactors: Clostridium sartagoforme, Clostridium felsineum, Clostridium roseum and Clostridium pasteurianum. Conclusions: The newly designed [FeFe] hydrogenase cluster‐specific primers, targeting the cluster‐conserved regions, allow for a direct amplification of a specific hydrogenase gene from the species of interest. Significance and Impact of the Study: Using this strategy for a screening of different Clostridium ssp. will provide new insights into the diversity of hydrogenase genes and should be a first step to study a complex hydrogen metabolism of this genus.  相似文献   
9.
We have applied density functional theory, using both pure (BP86) and hybrid (B3LYP and B3LYP*) functionals, to investigate structural parameters and reaction energies for nickel(II)-sulfur coordination compounds, as well as for small cluster models of the Ni-SI and Ni-R redox state of [NiFe] hydrogenases. Results obtained investigating experimentally well-characterized complexes show that BP86 is well suited to describe the structural features of this class of compounds. However, the singlet-triplet energy splitting and even the computed ground state are strongly dependent on the applied functional. Results for the cluster models of [NiFe] hydrogenases lead to the conclusion that in the reduced protein structures characterized by X-ray diffraction a hydride bridges the two metal centres. The energy splitting of the singlet and triplet states in Ni-R and Ni-SI models is calculated to be very small and may be overcome at room temperature to allow a spin crossover. Moreover, the relative stability of the Ni-SI and Ni-R structures adopted in the present investigation is fully compatible with their involvement in the reversible heterolytic cleavage of H(2).  相似文献   
10.
Escherichia coli can perform at least two modes of anaerobic hydrogen metabolism and expresses at least two types of hydrogenase activity. Respiratory hydrogen oxidation is catalysed by two 'uptake' hydrogenase isoenzymes, hydrogenase -1 and -2 (Hyd-1 and -2), and fermentative hydrogen production is catalysed by Hyd-3. Harnessing and enhancing the metabolic capability of E. coli to perform anaerobic mixed-acid fermentation is therefore an attractive approach for bio-hydrogen production from sugars. In this work, the effects of genetic modification of the genes encoding the uptake hydrogenases, as well as the importance of preculture conditions, on hydrogen production and fermentation balance were examined. In suspensions of resting cells pregrown aerobically with formate, deletions in Hyd-3 abolished hydrogen production, whereas the deletion of both uptake hydrogenases improved hydrogen production by 37% over the parent strain. Under fermentative conditions, respiratory H2 uptake activity was absent in strains lacking Hyd-2. The effect of a deletion in hycA on H2 production was found to be dependent upon environmental conditions, but H2 uptake was not significantly affected by this mutation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号