首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1921篇
  免费   14篇
  国内免费   7篇
  2021年   12篇
  2020年   6篇
  2019年   6篇
  2018年   5篇
  2017年   4篇
  2016年   5篇
  2015年   12篇
  2014年   127篇
  2013年   207篇
  2012年   301篇
  2011年   376篇
  2010年   368篇
  2009年   35篇
  2008年   34篇
  2007年   17篇
  2006年   19篇
  2005年   17篇
  2004年   15篇
  2003年   16篇
  2002年   12篇
  2001年   8篇
  2000年   11篇
  1999年   5篇
  1998年   15篇
  1997年   15篇
  1996年   12篇
  1995年   18篇
  1994年   16篇
  1993年   22篇
  1992年   13篇
  1991年   22篇
  1990年   6篇
  1989年   11篇
  1988年   24篇
  1987年   8篇
  1986年   15篇
  1985年   19篇
  1984年   21篇
  1983年   18篇
  1982年   23篇
  1981年   14篇
  1980年   7篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1972年   5篇
  1971年   6篇
  1970年   2篇
排序方式: 共有1942条查询结果,搜索用时 15 毫秒
1.
Corticosterone, the major stress hormone, plays an important role in regulating neuronal functions of the limbic system, although the cellular targets and molecular mechanisms of corticosteroid signaling are largely unknown. Here we show that a short treatment of corticosterone significantly increases α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission and AMPAR membrane trafficking in pyramidal neurons of prefrontal cortex, a key region involved in cognition and emotion. This enhancing effect of corticosterone is through a mechanism dependent on Rab4, the small GTPase-controlling receptor recycling between early endosome and plasma membrane. Guanosine nucleotide dissociation inhibitor (GDI), which regulates the cycle of Rab proteins between membrane and cytosol, forms an increased complex with Rab4 after corticosterone treatment. Corticosterone also triggers an increased GDI phosphorylation at Ser-213 by the serum- and glucocorticoid-inducible kinase (SGK). Moreover, AMPAR synaptic currents and surface expression and their regulation by corticosterone are altered by mutating Ser-213 on GDI. These results suggest that corticosterone, via SGK phosphorylation of GDI at Ser-213, increases the formation of GDI-Rab4 complex, facilitating the functional cycle of Rab4 and Rab4-mediated recycling of AMPARs to the synaptic membrane. It provides a potential mechanism underlying the role of corticosteroid stress hormone in up-regulating excitatory synaptic efficacy in cortical neurons.  相似文献   
2.
3.
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability.  相似文献   
4.
Summary Development of the nervous system of the pluteus larva of Strongylocentrotus droebachiensis was investigated using indirect immunofluorescence with antibodies against dopamine, GABA, and serotonin, and glyoxylic acid-induced fluorescence of catecholamines. Serotonergic cells first appear in full gastrulae; dopaminergic and GABAergic cells are present in early four-arm plutei. The number of neurons and the complexity of the nervous system increases through development of the pluteus. In the pluteus the dopaminergic component of the nervous system includes a ganglion in the lower lip of the mouth and a pair of ganglia at the base of the post-oral arms which extend axons along the base of the circumoral ciliary band. The distribution of cells visualized by glyoxylic acid-induced fluorescence is similar to that of dopaminergic cells. GABAergic neurons occur in the upper lip and in the wall of the esophagus. Serotonergic neurons are present in the lower lip; the pre-oral hood contains an apical ganglion which extends axons along the base of the epidermis overlying the blastocoel. The dopaminergic and GABAergic components of the nervous system are associated with effectors involved in feeding and swimming. The serotonergic component is not associated with any apparent effectors but may have a role in metamorphosis.  相似文献   
5.
Summary The synthetic peptides somatostatin (SRIF) and growth hormone-releasing hormone (GRH) were coupled directly to colloidal gold of different particle sizes. Both conjugates were biologically active in displacing the corresponding radiolabeled hormones from high affinity binding sites in pituitary membranes. Release of growth hormone (GH) from cultured anterior pituitary cells was modulated by both conjugates alone or in combination. Ultrastructural studies were performed with cells incubated at 4° C (2 h) and 37° C (2 min-2 h) with one of the labeled peptides or their combination. Somatotropes were identified by immunostaining with anti-rGH followed by protein A-ferritin, thus obtaining a triple labeling. Both hormone conjugates were internalized in different vesicles in the beginning but accumulated during longer incubation times in the same compartment. The secretory vesicles and the nucleus were not labeled by any hormone conjugate. In contrast to SRIF-gold, the uptake of GRH-gold conjugate decreased with longer incubation times. This effect could be neutralized by simulatenous incubation of the somatotropes with both regulating hormones. Hence, whereas the binding and internalization of SRIF by somatotropes do not seem to be influenced by GRH, the corresponding processes for GRH are stimulated by the presence of SRIF.  相似文献   
6.
Summary Antibodies to histamine were used for immunocytochemical studies of the visual system in the flies Calliphora erythrocephala and Musca domestica. Specific immunolabeling of photoreceptors was found both in the compound eyes and ocelli of both species. In the compound eyes histamine-like immunoreactivity (HA-IR) was found in all the short visual fibers (photoreceptors R1–6) and one type of long visual fiber (photoreceptor R8). In addition, the ocellar photoreceptors also show HA-IR. In view of earlier biochemical and pharmacological/physiological findings by Elias and Evans (1983) and Hardie (1987) it thus seems likely that histamine is a neurotransmitter in insect photoreceptors. Interestingly, the second type of long visual fiber (photoreceptor R7) has recently been found to be GABA-immunoreactive (Datum et al. 1986). The two types of long visual fibers may hence use different transmitters which act on different receptors of the postsynaptic neurons in the second visual neuropil, the medulla. In addition to the photoreceptors in the retina and ocelli, we found processes of HA-IR neurons in one of the optic lobe neuropils, the lobula. This finding indicates that histamine may also be a transmitter in certain interneurons in the visual system.Abbreviations HA histamine - GABA -amino butyric acid - GAD glutamic acid decarboxylase - 5-HT 5-hydroxytryptamine (serotonin) - HA-IR histamine-like immunoreactivity - R1-R6 class of short-axoned photoreceptors - R7 and R8 long-axoned photoreceptors - LMC large monopolar neuron of lamina - HSA human serum albumin - PBS phosphate-buffered saline - DEPC diethylpyrocarbonate  相似文献   
7.
Summary The distribution of FMRFamide-like immunoreactive neurons in the nervous system of the slug Limax maximus was studied using immunohistochemical methods. Approximately one thousand FMRFamide-like immunoreactive cell bodies were found in the central nervous system. Ranging between 15 m and 200 m in diameter, they were found in all 11 ganglia of the central nervous system. FMRFamide-like immunoreactive cell bodies were also found at peripheral locations on buccal nerve roots. FMRFamide-like immunoreactive nerve fibres were present in peripheral nerve roots and were distributed extensively throughout the neuropil and cell body regions of the central ganglia. They were also present in the connective tissue of the perineurium, forming an extensive network of varicose fibres. The large number, extensive distribution and great range in size of FMRFamide-like immunoreactive cell bodies and the wide distribution of immunoreactive fibres suggest that FMRFamide-like peptides might serve several different functions in the nervous system of the slug.  相似文献   
8.
Carbachol (CCh), a muscarinic agonist that elicits the formation of inositol trisphosphate (IP3) and diacylglycerol (DG), induces a calcium-dependent [3H]norepinephrine ([3H]NE) release [IC50 = (2.7 +/- 0.5) X 10(-4) M] in rat brain slices. Similarly, other muscarinic agonists evoke [3H]NE release which is specifically inhibited by muscarinic antagonists such as 3-quinuclidinyl benzilate, atropine, and N-methyl-4-piperidyl benzilate. The atropine-sensitive evoked release is effectively inhibited by neomycin (IC50 = 50 microM), a phospholipase C inhibitor that interferes with IP3-dependent cellular processes. In addition, polymyxin B, a rather selective inhibitor of protein kinase C (PK-C), abolishes the agonist-mediated release with a half-maximal effective concentration of 0.53 microM (750 ng/ml). These results have a significant implication for the mechanism by which agonists generating IP3 and DG act as inducers of neurotransmitter release in the CNS. However, since both neomycin and polymyxin B act also as N-calcium-channel blockers, other possible mechanisms are discussed. The CCh-induced release suggests that in the CNS an agonist-receptor interaction leads to a calcium-dependent neurotransmitter release, most likely via promoting the IP3/DG as second messengers followed by activation of PK-C.  相似文献   
9.
Summary We describe a circadian rhythm in the surface density of receptors that play a dominant role in the mating process of the unicellular green alga Chlamydomonas eugametos.These receptors — called agglutinins — are large glycoproteins extrinsically bound to the membrane of gamete flagella. We found circadian fluctuations in their density. Since inhibition of protein synthesis affected the agglutinin density without a lag period at any time,we conclude that the density was dependent on de novo synthesis and that the fluctuations in density are caused by circadian oscillations in the rate of agglutinin synthesis. This phenomenon evidently underlies the pronounced endogenous rhythm in mating competence that we described previously (Demets et al. 1987). Finally, we speculate on the nature of the time keeping mechanism that is generating these rhythmic events.  相似文献   
10.
Summary Dissected ampullae of Lorenzini of the skate (Raja clavata) were studied with the aim of determining the synaptic transmitter between electroreceptor cell and afferent fibre. Resting activity and stimulus-evoked activity in response to electrical pulses were recorded in single afferent units at constant perfusion with normal and test solutions containing different putative neurotransmitters. Presynaptic transmitter release was blocked by Mg2+ (up to 50 mM) to investigate the effects of the test substances upon the postsynaptic membrane. l-Glutamate (l-GLU) and l-aspartate (l-ASP), both at concentrations between 10-7 and 10-3 M, enlarged strongly resting and stimulus-evoked discharge frequency in the afferent fibre. If transmission was blocked by high Mg2+, resting discharge frequency could be restored by l-GLU or l-ASP. The glutamate agonists quisqualate (10-8–105 M) and N-methyl-D-aspartate (10-5–10-3 M) enlarged spontaneous activity in the afferent fiber. The same was found for kainic acid (10-9–10-5 M). Taurine at concentrations between 10-5 and 10-3 M caused a concentration-dependent decrease in afferent activity. The same was found for gammaaminobutyric acid (GABA; 10-5–10-4 M), and for the catecholamines adrenaline and noradrenaline, both in concentrations between 10-5 and 10-3 M. Serotonine (10-5–10-3 M) and dopamine (10-5-10-3 M) had no effect on resting or evoked activity in the Lorenzinian ampulla afferents. Acetylcholine (ACh; 10-4 M) enlarged discharge frequency in those units with initial rates lower than 22–25 Hz, but diminished discharge frequency in fibres with initial activity higher than 25 Hz. When synaptic transmission was blocked by high Mg2+ solution, perfusion with additional ACh did not restore resting activity in the afferent fibre. The results suggest that the most probable transmitter in the afferent synapse of the ampullae of Lorenzini is l-GLU or l-ASP, or a substance of similar nature.Abbreviations ACh acetylcholine - GABA gamma aminobutyric acid - KA kainic acid - l-ASP l-aspartate - l-GLU l-glutamate - NMDA N-methyl-D-aspartate - Q quisqualate - n.s. normal solution  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号