首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2012年   1篇
  2006年   1篇
  1996年   1篇
  1988年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Lesch-Nyhan disease and its attenuated variants are caused by mutations in the HPRT1 gene, which encodes the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase. The mutations are heterogeneous, with more than 400 different mutations already documented. Prior efforts to correlate variations in the clinical phenotype with different mutations have suggested that milder phenotypes typically are associated with mutants that permit some residual enzyme function, whereas the most severe phenotype is associated with null mutants. However, multiple exceptions to this concept have been reported. In the current studies 44 HPRT1 mutations associated with a wide spectrum of clinical phenotypes were reconstructed by site-directed mutagenesis, the mutant enzymes were expressed in vitro and purified, and their kinetic properties were examined toward their substrates hypoxanthine, guanine, and phosphoribosylpyrophosphate. The results provide strong evidence for a correlation between disease severity and residual catalytic activity of the enzyme (k(cat)) toward each of its substrates as well as several mechanisms that result in exceptions to this correlation. There was no correlation between disease severity and the affinity of the enzyme for its substrates (K(m)). These studies provide a valuable model for understanding general principles of genotype-phenotype correlations in human disease, as the mechanisms involved are applicable to many other disorders.  相似文献   
2.
Summary We have screened antibodies for immunocytochemical staining in the optic lobes of the brain of Drosophila melanogaster. Seven polyclonal antisera and five monoclonal antibodies are described that selectively and reproducibly stain individual cells and/or produce characteristic staining patterns in the neuropile. Such antisera are useful for the cellular characterization of molecular and structural brain defects in visual mutants. In the wildtype visual system we can at present separately stain the following: the entire complement of columnar T 1 neurons; a small set of presumptive serotonergic neurons; some 3000 cells that contain and synthesize -amino butyric acid (GABA); and three groups of cells that bind antibodies to Ca2+-binding proteins. In addition, small groups of hitherto unknown tangential cells that send fine arborizations into specific strata of the medulla, and two patterns of characteristic layers in the visual neuropile have been identified by use of monoclonal antibodies generated following immunization of mice with homogenates of the brain of Drosophila melanogaster.  相似文献   
3.
Abstract: One purpose of clinical neurochemistry has been to indicate "activities" of catecholamine systems, by assaying levels of the effector compounds or their metabolites in body fluids such as plasma, cerebrospinal fluid, urine, or microdialysate. This review discusses a new purpose: relating specific catecholaminergic phenotypes to neurogenetic disorders. Distinctive catecholamine patterns in several neurogenetic conditions reflect enzyme deficiencies as direct or indirect effects of gene mutations. These neurochemical patterns can provide potentially important clues to the diagnosis, treatment, and pathophysiology of neurogenetic disorders. Linking genetic abnormalities with molecular mechanisms and clinical manifestations of disease represents a useful new direction in clinical neurochemistry.  相似文献   
4.
Synaptic cell adhesion molecules (SCAMs) are mostly membrane-anchored molecules with extracellular domains that extend into the synaptic cleft. Prototypical SCAMs interact with homologous or heterologous molecules on the surface of adjacent cells, ensuring the precise apposition of pre- and postsynaptic elements. More recent definitions of SCAMs often include molecules involved in axon pathfinding, cell recognition and synaptic differentiation events, making SCAMs functionally and molecularly a highly diverse group. In this review, we summarize the proposed in vivo functions of a large variety of SCAMs. We mainly focus on results obtained from analyses of genetic model organisms, mostly mouse knockout mutants, lacking expression of the respective candidate genes. In contrast to the substantial effect yielded by some knockouts of molecules involved in synaptic vesicle release, no SCAM mutant has been reported thus far that shows a prominently altered structure of the majority of synapses or even lacks synapses altogether. This surprising resilience of synaptic structure might be explained by a high redundancy between different SCAMs, by the assumption that the crucial molecular players in synapse structure have yet to be discovered or by a grand variability in the mechanisms of synapse formation that underlies the diversity of synapses. Whatever the final answer turns out to be, the genetic dissection of the SCAM superfamilies has led to a much better understanding of the different steps required to form, differentiate and modify a synapse.Our studies are supported by the Deutsche Forschungsgemeinschaft (DFG-SFB 406, Germany). I.D. is a recipient of a Georg Christoph Lichtenberg Stipend (Ministry for Science and Culture of Lower Saxony, Germany).An erratum to this article can be found at  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号