首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  2019年   1篇
  2014年   2篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
 Cell lineages of identified midline cells were traced in the amphipod Orchestia cavimana (Crustacea, Malacostraca) by in vivo labelling. Midline cells are a common phenomenon in the germ band of crustaceans and insects. Studies in midline cells of Drosophila showed an origin from separate, paired anlagen and a differentiation into three types of cells. The in vivo labelling of midline cells of Orchestia demonstrates that they originate from the same material as the neural and epidermal ectoderm, divide in a stereotyped cell division pattern and give rise to at least two different types of cells. During the following evolutionarily derived mode of germ band elongation in Orchestia, a morphogenetic process is intercalated that separates germ band halves. On the level of single cells, it can be shown that midline cells are the only ectodermal cells that bridge the large distance between the separated parts. The cells are stretched extensively but do not proliferate. Comparing the midline cells of Orchestia with non-malacostracan crustaceans and insects, the results favour the hypothesis that midline cells are a distinct population of cells homologous in crustaceans and insects. Received: 24 July 1998 / Accepted: 13 October 1998  相似文献   
2.
Subpopulations of Kenyon cells, the intrinsic neurons of the insect mushroom bodies, are typically sequentially generated by dedicated neuroblasts that begin proliferating during embryogenesis. When present, Class III Kenyon cells are thought to be the first born population of neurons by virtue of the location of their cell somata, farthest from the position of the mushroom body neuroblasts. In the adult tobacco hornworm moth Manduca sexta, the axons of Class III Kenyon cells form a separate Y tract and dorsal and ventral lobelet; surprisingly, these distinctive structures are absent from the larval Manduca mushroom bodies. BrdU labeling and immunohistochemical staining reveal that Class III Kenyon cells are in fact born in the mid-larval through adult stages. The peripheral position of their cell bodies is due to their genesis from two previously undescribed protocerebral neuroblasts distinct from the mushroom body neuroblasts that generate the other Kenyon cell types. These findings challenge the notion that all Kenyon cells are produced solely by the mushroom body neuroblasts, and may explain why Class III Kenyon cells are found sporadically across the insects, suggesting that when present, they may arise through de novo recruitment of neuroblasts outside of the mushroom bodies. In addition, lifelong neurogenesis by both the Class III neuroblasts and the mushroom body neuroblasts was observed, raising the possibility that adult neurogenesis may play a role in mushroom body function in Manduca.  相似文献   
3.
4.
The Drosophila mushroom bodies (MBs), paired brain structures composed of vertical and medial lobes, achieve their final organization at metamorphosis. The alpha lobe absent (ala) mutant randomly lacks either the vertical lobes or two of the median lobes. We characterize the ala axonal phenotype at the single-cell level, and show that the ala mutation affects Drosophila ethanolamine (Etn) kinase activity and induces Etn accumulation. Etn kinase is overexpressed in almost all cancer cells. We demonstrate that this enzymatic activity is required in MB neuroblasts to allow a rapid rate of cell division at metamorphosis, linking Etn kinase activity with mitotic progression. Tight control of the pace of neuroblast division is therefore crucial for completion of the developmental program in the adult brain.  相似文献   
5.
Asymmetric cell division occurs when a mother cell divides to generate two distinct daughter cells, a process that promotes the generation of cellular diversity in metazoans. During Caenorhabditis elegans development, the asymmetric divisions of neural progenitors generate neurons, neural support cells and apoptotic cells. C. elegans HAM-1 is an asymmetrically distributed cortical protein that regulates several of these asymmetric neuroblast divisions. Here, we show that HAM-1 is a novel protein and define residues important for HAM-1 function and distribution to the cell cortex. Our phenotypic analysis of ham-1 mutant embryos suggests that HAM-1 controls only neuroblast divisions that produce apoptotic cells. Moreover, ham-1 mutant embryos contain many unusually large cell-death corpses. An investigation of this corpse phenotype revealed that it results from a reversal of neuroblast polarity. A misplacement of the neuroblast cleavage plane generates daughter cells of abnormal size, with the apoptotic daughters larger than normal. Thus, HAM-1 regulates the position of the cleavage plane, apoptosis and mitotic potential in C. elegans asymmetric cell divisions.  相似文献   
6.
The optic lobe forms a prominent compartment of the Drosophila adult brain that processes visual input from the compound eye. Neurons of the optic lobe are produced during the larval period from two neuroepithelial layers called the outer and inner optic anlage (OOA, IOA). In the early larva, the optic anlagen grow as epithelia by symmetric cell division. Subsequently, neuroepithelial cells (NE) convert into neuroblasts (NB) in a tightly regulated spatio-temporal progression that starts at the edges of the epithelia and gradually move towards its centers. Neuroblasts divide at a much faster pace in an asymmetric mode, producing lineages of neurons that populate the different parts of the optic lobe. In this paper we have reconstructed the complex morphogenesis of the optic lobe during the larval period, and established a role for the Notch and Jak/Stat signaling pathways during the NE-NB conversion. After an early phase of complete overlap in the OOA, signaling activities sort out such that Jak/Stat is active in the lateral OOA which gives rise to the lamina, and Notch remains in the medial cells that form the medulla. During the third instar, a wave front of enhanced Notch activity progressing over the OOA from medial to lateral controls the gradual NE-NB conversion. Neuroepithelial cells at the medial edge of the OOA, shortly prior to becoming neuroblasts, express high levels of Delta, which activates the Notch pathway and thereby maintains the OOA in an epithelial state. Loss of Notch signaling, as well as Jak/Stat signaling, results in a premature NE-NB conversion of the OOA, which in turn has severe effects on optic lobe patterning. Our findings present the Drosophila optic lobe as a useful model to analyze the key signaling mechanisms controlling transitions of progenitor cells from symmetric (growth) to asymmetric (differentiative) divisions.  相似文献   
7.
The Drosophila melanogaster ventral nerve cord derives from neural progenitor cells called neuroblasts. Individual neuroblasts have unique gene expression profiles and give rise to distinct clones of neurons and glia. The specification of neuroblast identity provides a cell intrinsic mechanism which ultimately results in the generation of progeny which are different from each other. Segment polarity genes have a dual function in early neurogenesis: within distinct regions of the neuroectoderm, they are required both for neuroblast formation and for the specification of neuroblast identity. Previous studies of segment polarity gene function largely focused on neuroblasts that arise within the posterior part of the segment. Here we show that the segment polarity gene midline is required for neuroblast formation in the anterior-most part of the segment. Moreover, midline contributes to the specification of anterior neuroblast identity by negatively regulating the expression of Wingless and positively regulating the expression of Mirror. In the posterior-most part of the segment, midline and its paralog, H15, have partially redundant functions in the regulation of the NB marker Eagle. Hence, the segment polarity genes midline and H15 play an important role in the development of the ventral nerve cord in the anterior- and posterior-most part of the segment.  相似文献   
8.
The espins are a family of multifunctional actin cytoskeletal proteins. They are present in hair cell stereocilia and are the target of mutations that cause deafness and vestibular dysfunction. Here, we demonstrate that the different espin isoforms are expressed in complex spatiotemporal patterns during inner ear development. Espin 3 isoforms were prevalent in the epithelium of the otic pit, otocyst and membranous labyrinth as they underwent morphogenesis. This espin was down-regulated ahead of hair cell differentiation and during neuroblast delamination. Espin also accumulated in the epithelium of branchial clefts and pharyngeal pouches and during branching morphogenesis in other embryonic epithelial tissues, suggesting general roles for espins in epithelial morphogenesis. Espin reappeared later in inner ear development in differentiating hair cells. Its levels and compartmentalization to stereocilia increased during the formation and maturation of stereociliary bundles. Late in embryonic development, espin was also present in a tail-like process that emanated from the hair cell base. Increases in the levels of espin 1 and espin 4 isoforms correlated with stereocilium elongation and maturation in the vestibular system and cochlea, respectively. Our results suggest that the different espin isoforms play specific roles in actin cytoskeletal regulation during epithelial morphogenesis and hair cell differentiation.  相似文献   
9.
The otic placode generates the auditory and vestibular sense organs and their afferent neurons; however, how auditory and vestibular fates are specified is unknown. We have generated a fate map of the otic placode and show that precursors for vestibular and auditory cells are regionally segregated in the otic epithelium. The anterior-lateral portion of the otic placode generates vestibular neurons, whereas the posterior-medial region gives rise to auditory neurons. Precursors for vestibular and auditory sense organs show the same distribution. Thus, different regions of the otic placode correspond to particular sense organs and their innervating neurons. Neurons from contiguous domains rarely intermingle suggesting that the regional organisation of the otic placode dictates positional cues to otic neurons. But, in addition, vestibular and cochlear neurogenesis also follows a stereotyped temporal pattern. Precursors from the anterior-lateral otic placode delaminate earlier than those from its medial-posterior portion. The expression of the proneural genes NeuroM and NeuroD reflects the sequence of neuroblast formation and differentiation. Both genes are transiently expressed in vestibular and then in cochlear neuroblasts, while differentiated neurons express Islet1, Tuj1 and TrkC, but not NeuroM or NeuroD. Together, our results indicate that the position of precursors within the otic placode confers identity to sensory organs and to the corresponding otic neurons. In addition, positional information is integrated with temporal cues that coordinate neurogenesis and sensory differentiation.  相似文献   
10.
Drosophila neuroblasts provide an excellent model for asymmetric cell divisions, where cell-fate determinants such as Miranda localize at the basal cortex and segregate to one daughter cell. Mechanisms underlying this process, however, remain elusive. We found that Mo25 and the GC kinase Fray act in this regulation. mo25 and fray mutants show an indistinguishable defect in Miranda localization. On the other hand, Drosophila Mo25 interacts with the tumor suppressor kinase Lkb1 in vivo, as have shown in mammals. Overexpression of Lkb1, which accumulates in the cell cortex, drastically relocalizes both Mo25 and Fray from the cytoplasm to the cortex, causing the same phenotype as mo25-mutant neuroblasts. Recovery from this defect caused by Lkb1 overexpression requires simultaneous overexpression of Mo25 and Fray. We suggest from those results that Mo25 and Fray operate together or in the same pathway in Drosophila asymmetric processes, and that their function counterbalances Lkb1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号