首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  2020年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1997年   1篇
  1995年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1983年   1篇
排序方式: 共有25条查询结果,搜索用时 93 毫秒
1.
Abstract: Gangliosides were previously reported to induce neuritogenesis in primary neuronal cultures and in some neurally derived cell lines. Because isolated gangliosides usually contain variable quantities of peptides, we investigated the possibility the neurite-stimulating activity could be caused by these contaminants. Ganglioside preparations from bovine brain and other sources were subjected to a three-step purification procedure that eliminated at least 95% of the contaminating peptides. These purfied preparations retained their capacity to induce extensive neurite growth in neuro-2A murine neuroblastoma. Proteolytic digestion and a number of additional procedures were used to reduce residual contamination further without loss of activity. Several crude ganglioside samples had negative effects on neurite development until freed of theri inhibitory factors, which were derived from the tissue and/or introduced during laboratory operations. This was particularly evident for bovine white matter gangliosides whose activity increased in proportion to peptide removal. When carefully purified, virtually all of 11 different gangliosides tested were highly active, with the possible exception of GM4, which demonstrated only moderate activity in a limited number of tests. All of the neutral glycolipids tested, as well as sulfatides and free sialic acid, were inactive.  相似文献   
2.
Ganglioside Composition of Normal and Mutant Mouse Embryos   总被引:2,自引:0,他引:2  
The enrichment of gangliosides in neuronal membranes suggests that they play an important role in CNS development. We recently found a marked tetrasialoganglioside deficiency in twl/twl mutant mouse embryos at embryonic day (E)-11. The recessive twl/twl mutants die at embryonic ages E-9 to E-18 from failed neural differentiation in the ventral portion of the neural tube. In the present study, we examined the composition and distribution of gangliosides in twl/twl mutant mouse embryos at E-12. The total ganglioside sialic acid concentration was significantly lower in the mutants than in normal (+/-) embryos. The mutants also expressed significant deficiencies of gangliosides in the "b" metabolic pathway (GD3, GD1b, GT1b, and GQ1b) and elevations in levels of gangliosides in the "a" metabolic pathway (GM3, GM2, GM1, and GD1a). These findings suggest that the mutants have a partial deficiency in the activity of a specific sialyltransferase in the b pathway. Regional ganglioside distribution was also studied in E-12 normal mouse embryos. The ganglioside composition in heads and bodies was similar to each other and to whole embryos. Total ganglioside concentration and the distribution of b pathway gangliosides were significantly higher in neural tube regions than in nonneural tube regions. These findings suggest that b pathway gangliosides accumulate in differentiating neural cells and that the deficiency of these gangliosides in the twl/twl mutants is closely associated with failed neural differentiation.  相似文献   
3.
Abstract: The phosphorylation of surface proteins by ectoprotein kinase has been proposed to play a role in mechanisms underlying neuronal differentiation and their responsiveness to nerve growth factor (NGF). PC 12 clones represent an optimal model for investigating the mode of action of NGF in a homogeneous cell population. In the present study we obtained evidence that PC12 cells possess ectoprotein kinase and characterized the endogenous phosphorylation of its surface protein substrates. PC12 cells maintained in a chemically defined medium exhibited phosphorylation of proteins by [γ-32P]ATP added to the medium at time points preceding the intracellular phosphorylation of proteins in cells labeled with 32Pi. This activity was abolished by adding apyrase or trypsin to the medium but was not sensitive to addition of an excess of unlabeled Pi. As also expected from ecto-protein kinase activity, PC12 cells catalyzed the phosphorylation of an exogenous protein substrate added to the medium, dephospho-α-casein, and this activity competed with the endogenous phosphorylation for extracellular ATP. Based on these criteria, three protein components migrating in sodium dodecyl sulfate gels with apparent molecular weights of 105K, 39K, and 20K were identified as exclusive substrates of ecto-protein kinase in PC12 cells. Of the phosphate incorporated into these proteins from extracellular ATP, 75–87% was found in phosphothreonine. The phosphorylation of the 39K protein by ecto-protein kinase did not require Mg2+, implicating this activity in the previously demonstrated regulation of Ca2+-dependent, high-affinity norepinephrine uptake in PC12 cells by extracellular ATP. The protein kinase inhibitor K-252a inhibited both intra- and extracellular protein phosphorylation in intact PC12 cells. Its hydrophilic analogue K-252b, had only minimal effects on intracellular protein phosphorylation but readily inhibited the phosphorylation of specific substrates of ecto-protein kinase in PC12 cells incubated with extracellular ATP, suggesting the involvement of ecto-protein kinase in the reported inhibition of NGF-induced neurite extension by K-252b. Preincubation of PC12 cells with 50 ng/ml of NGF for 5 min stimulated the activity of ecto-protein kinase toward all its endogenous substrates. Exposure of PC12 cells to the same NGF concentration for 3 days revealed another substrate of ecto-protein kinase, a 53K protein, whose surface phosphorylation is expressed only after NGF-induced neuronal differentiation. In the concentration range (10–100 μM) at which 6-thioguanine blocked NGF-promoted neurite outgrowth in PC12 cells, 6-thioguanine effectively inhibited the phosphorylation of specific proteins by ecto-protein kinase. This study provides the basis for continued investigation of the involvement of ecto-protein kinase and its surface protein substrates in neuronal differentiation, neuritogenesis, and synaptogenesis.  相似文献   
4.
Abstract: SR 57746A {1-[2-(naphth-2-yl)ethyl]-4-(3-trifluoromethylphenyl)-1,2,5,6-tetrahydropyridine hydrochloride} exhibits neurotrophic activities in vivo and in vitro. We used the rat pheochromocytoma PC12 cell line to investigate in vitro cellular changes induced by SR 57746A. A significant increase in the percentage of cells bearing neurite-like processes was obtained in cells treated by SR 57746A and nerve growth factor (NGF) compared with NGF treatment alone. SR 57746A added alone, however, had no effect on morphogenesis or on survival of cells in serum-free medium. In contrast, SR 57746A induced a "priming" effect on PC12 cells for neurite outgrowth within 6 h of addition of the protein tyrosine kinase inhibitor genistein. An increase in α-actinin content resulted from treatment with SR 57746A. Expression of NGF-mediated acetylcholinesterase and choline acetyltransferase was enhanced within 5 days by SR 57746A. The molecule also induced rapid F-actin redistribution. Within 2 min of incubation, outgrowth of F-actin-containing filopodia was clearly visible at the cell periphery, as previously shown with NGF. It is interesting that this effect of SR 57746A could be mimicked by protein tyrosine kinase inhibitors and abolished by preincubation with sodium orthovanadate, a protein tyrosine phosphatase inhibitor.  相似文献   
5.
The thymosin betas (Tbetas) are polypeptide regulators of actin dynamics that are critical for the growth and branching of neurites in developing neurons. We found that mRNAs for Tbeta4, Tbeta10, and Tbeta15 were highly expressed in the developing rat brain during neuritogenesis, supporting a role for the Tbetas in this process. Overexpression of the Tbetas increased the number of neurite branches per neuron in cultured hippocampal and cerebral cortex neurons, and Tbeta15 had the greatest effect. Actin binding activity appears to be essential for the branch-promoting activity of Tbetas because two mutants of Tbeta15 lacking monomeric actin binding activity failed to stimulate branch formation. We also found that transfection of siRNA against Tbeta15 reduced branching. Taken together, these data suggest that the three Tbetas, and especially Tbeta15, stimulate neurite branching during brain development.  相似文献   
6.
Melatonin has both neuritogenic and neuroprotective effects in mammalian cell lines such as neuroblastoma cells. The mechanisms of action include receptor-coupled processes, direct binding and modulation of calmodulin and protein kinase C, and direct scavenging of free radicals. While melatonin is produced in invertebrates and has influences on their physiology and behavior, little is known about its mechanisms of action. We studied the influence of melatonin on neuritogenesis in well-differentiated, extensively-arborized crustacean x-organ neurosecretory neurons. Melatonin significantly increased neurite area in the first 24 h of culture. The more physiological concentrations, 1 nM and 1 pM, increased area at 48 h also, whereas the pharmacological 1 μM concentration appeared to have desensitizing effects by this time. Luzindole, a vertebrate melatonin receptor antagonist, had surprising and significant agonist-like effects in these invertebrate cells. Melatonin receptors have not yet been studied in invertebrates. However, the presence of membrane-bound receptors in this population of crustacean neurons is indicated by this study. Melatonin also has significant neuroprotective effects, reversing the inhibition of neuritogenesis by 200 and 500 μM hydrogen peroxide. Because this is at least in part a direct action not requiring a receptor, melatonin's protection from oxidative stress is not surprisingly phylogenetically-conserved.  相似文献   
7.
Abstract: The powerful regulatory machinery of protein phosphorylation operates in the extracellular environment of the brain. Enzymatic activity with the catalytic specificity of protein kinase C (PKC) was detected on the surface of brain neurons, where it can serve as a direct target for neurotrophic and neurotoxic substances that control neuronal development and cause neurodegeneration. This activity fulfilled all the criteria required of an ectoprotein kinase (ecto-PK). Detailed analysis of surface protein phosphorylation in cultured brain neurons using specific exogenous substrates (casein, histones, and myelin basic protein), inhibitors (PKC-pseudosubstrate 19–36; K252b) and antibodies (anti-PKC catalytic region M.Ab.1.9, antibodies to the carboxy-terminus of eight PKC isozymes) revealed several types of ecto-PK activity, among them ecto-PKs with catalytic specificity of the PKC isozymes ζ and δ. The activity of the neuronal ecto-PKC is constitutive and not stimulated by phorbol esters. The phosphorylation of a 12K/13K surface protein duplex by ecto-PKC-δ was found to be developmentally regulated, with peak activity occurring during the onset of neuritogenesis. Alzheimer's amyloid peptides β1–40 and β25–35 applied at neurotrophic concentrations stimulated the phosphorylation of endogenous substrates of ecto-PKC activity in brain neurons but inhibited specifically this surface phosphorylation activity with the same dose-response relationships that cause neurodegeneration. As may be expected from a relevant pathophysiological activity, β-amyloid peptide 1–28 did not inhibit this surface phosphorylation. The discovery that ecto-PKC-mediated protein phosphorylation serves as a target for β-amyloid peptides at the very site they operate, i.e., at the neuronal cell surface, opens a new research direction in the investigation of molecular events that play a role in the etiology of developmental disabilities and neurodegenerative disorders.  相似文献   
8.
The neuritogenic effect of exogenous ganglioside has been documented with a variety of neuronal and neuroblastoma systems, but the mechanism is not understood. Involvement of Ca2+ is suggested by this study which demonstrates that treatment of Neuro-2A cells with bovine brain gangliosides (BBG) in Ca2(+)-depleted medium failed to produce neurite outgrowth. This was in contrast to treatment with retinoic acid or dibutyryl cyclic AMP which induced differentiation under the same conditions. Addition of BBG to Neuro-2A cells caused small, but significant, increases in both influx and efflux of Ca2+. It thus appears that although neuritogenesis can proceed by more than one mechanism, that induced by BBG requires exogenous Ca2+ and involves stimulation of Ca2+ flux.  相似文献   
9.
Amphipathic compounds containing N-acetylneuraminic acid (sialic acid) [for example, D-N-acetylneuraminyl-(alpha 2-1)-2S,3R,4E-2-N-tetracosanoyl sphingenine, sialyl alkyl glycerol ethers, and sialyl cholesterols] induced neuritogenesis in a neuroblastoma cell line (Neuro2a). The sialic acid in the hydrophilic moiety of the compounds is specifically required for neuritogenesis. The requirement for molecular specificity of the hydrophobic moiety, however, is rather low. Regarding the hydrophobic moiety, no preference for cholesterol, alkyl glycerol ether, or ceramide residues was observed as to their neuritogenic activity. Sialyl compounds with alpha-ketosidic sialyl linkages were more active than the corresponding beta-anomers. These sialyl compounds induced the growth of only one neurite, but a long one, from the cell body. This type of neuritogenes is completely different from that induced by compounds capable of elevating the concentration of intracellular cyclic AMP, which induced the appearance of many neurites from a single cell body. Besides this morphological change, the active sialyl compounds also caused a change in the carbohydrate composition of the cell surface. Sialyl compound treatment drastically increased the concentration of peanut agglutinin binding sites.  相似文献   
10.
Mouse NB2a/dl neuroblastoma cells elaborate axonal neurites in response to various chemical treatments including dibutyryl cyclic AMP and serum deprivation. Hirudin, a specific inhibitor of thrombin, initiated neurite outgrowth in NB2a/dl cells cultured in the presence of serum; however, these neurites typically retracted within 24 h. The cysteine protease inhibitors leupeptin and N-acetyl-leucyl-leucyl-norleucinal (CI; preferential inhibitor of micromolar calpain but also inhibits millimolar calpain) at 10(-6) M considerably enhanced neurite outgrowth induced by serum deprivation, but could not induce neuritogenesis in the presence of serum. A third cysteine protease inhibitor, N-acetyl-leucyl-leucyl-methional (CII; preferential inhibitor of millimolar calpain but also inhibits micromolar calpain), had no detectable effects by itself. Cells treated simultaneously with hirudin and either leupeptin, CI, or CII elaborated stable neurites in the presence of serum. Cell-free enzyme assays demonstrated that hirudin inhibited thrombin but not calpain, CI and CII inhibited calpain but not thrombin, and leupeptin inhibited both proteases. These results imply that distinct proteolytic events, possibly involving more than one protease, regulate the initiation and subsequent elongation and stabilization of axonal neurites. Since the addition of exogenous thrombin or calpain to serum-free medium did not modify neurite outgrowth, the proteolytic events affected by these inhibitors may be intracellular or involve proteases distinct from thrombin or calpain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号