首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2016年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
Marine bacterium Vibrio sp. F-6, utilizing agarose as a carbon source to produce agarases, was isolated from seawater samples taken from Qingdao, China. Two agarases (AG-a and AG-b) were purified to a homogeneity from the cultural supernatant of Vibrio sp. F-6 through ammonium sulfate precipitation, Q-Sepharose FF chromatography, and Sephacryl S-100 gel filtration. Molecular weights of agarases were estimated to be 54.0 kDa (AG-a) and 34.5 kDa (AG-b) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH values for AG-a and AG-b were about 7.0 and 9.0, respectively. AG-a was stable in the pH range of 4.0-9.0 and AG-b was stable in the pH range of 4.0-10.0. The optimum temperatures of AG-a and AG-b were 40 and 55 degrees C, respectively. AG-a was stable at temperature below 50 degrees C. AG-b was stable at temperature below 60 degrees C. Zn(2+), Mg(2+) or Ca(2+) increased AG-a activity, while Mn(2+), Cu(2+) or Ca(2+) increased AG-b activity. However, Ag(+), Hg(2+), Fe(3+), EDTA and SDS inhibited AG-a and AG-b activities. The main hydrolysates of agarose by AG-a were neoagarotetraose and neoagarohexaose. The main hydrolysates of agarose by AG-b were neoagarooctaose and neoagarohexaose. When the mixture of AG-a and AG-b were used, agarose was mainly degraded into neoagarobiose.  相似文献   
2.
An α-neoagarooligosaccharide hydrolase, AgaNash, was purified from Cellvibrio sp. OA-2007, which utilizes agarose as a substrate. The agaNash gene, which encodes AgaNash, was obtained by comparing the N-terminal amino acid sequence of AgaNash with that deduced from the nucleotide sequence of the full-length OA-2007 genome. The agaNash gene combined with the Saccharomyces cerevisiae signal peptide α-mating factor was transformed into the YPH499 strain of S. cerevisiae to generate YPH499/pTEF-MF-agaNash, and the recombinant yeast was confirmed to produce AgaNash, though it was mainly retained within the recombinant cell. To enhance AgaNash secretion from the cell, the signal peptide was replaced with a combination of the signal peptide and a threonine- and serine-rich tract (T-S region) of the S. diastaticus STA1 gene. The new recombinant yeast, YPH499/pTEF-STA1SP-agaNash, was demonstrated to secrete AgaNash and hydrolyze neoagarobiose with an efficiency of as high as 84%, thereby producing galactose, which is a fermentable sugar for the yeast, and ethanol, at concentrations of up to 1.8 g/L, directly from neoagarobiose.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号