首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2004年   1篇
  1999年   1篇
  1995年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
The organization of the nervous system ofProcerodes littoralis (Tricladida, Maricola, Procerodidae) was studied by immunocytochemistry, using antibodies to authentic flatworm neuropeptide F (NPF) (Moniezia expansa). Compared to earlier investigations of the neuroanatomy of tricladid flatworms, the pattern of NPF immunoreactivity inProcerodes littoralis reveals differences in the following respects: 1. Shape and structure of the brain. 2. Number and composition of longitudinal nerve cords. 3. Shape of branches of, and transverse connections between, main ventral nerve cords. 4. Composition of the pharyngeal nervous system. The rich innervation by NPF immunoreactive (IR) fibres and cells of the subepithelial muscle layer, the pharynx musculature and the musculature of the male copulatory apparatus indicates a neurotransmitter or neuromodulatory influence on muscular activity.  相似文献   
2.
3.
4.
石坚  王原  梁佳  杜娟  赵章武 《昆虫学报》2021,64(9):1080-1091
【目的】神经肽F(neuropeptide F, NPF)是无脊椎动物特有的一类神经肽,因其C末端是苯丙氨酸(F)而命名,参与昆虫的取食、生物节律、学习记忆等多种生理功能的调控。本研究旨在明确NPF对亚洲玉米螟Ostrinia furnacalis生长发育的影响,为害虫防治提供重要依据。【方法】采用一种基于工程菌高效合成靶向昆虫基因的dsRNA的方法经济有效地敲降npf,用低浓度(0.01%)和高浓度(0.02%)dsNPF和dsGFP(对照)分别饲喂亚洲玉米螟1龄初、3龄初和5龄初幼虫直至化蛹,检测5龄幼虫平均取食量、体重、体长、存活率和化蛹率,蛹羽化率和成虫产卵量,以及幼虫各龄期、蛹发育历期和成虫寿命。【结果】从亚洲玉米螟1, 3和5龄初幼虫开始饲喂0.01%和0.02% dsNPF时,与饲喂相应浓度dsGFP的对照相比,除个别点外,5龄幼虫的取食量、体重、体长、存活率和化蛹率,蛹羽化率和成虫单雌产卵量均显著降低,幼虫各龄期、蛹发育历期均显著延长,成虫寿命显著缩短。且dsNPF处理幼虫的龄期越早对发育的影响越大。其中0.01% dsNPF处理的1龄幼虫和0.02% dsNPF处理的3龄幼虫有90%的个体在蛹期死亡,而0.02%dsNPF处理的1龄幼虫有90%的个体在幼虫期死亡。【结论】结果提示NPF对亚洲玉米螟的发育和取食具有调控作用,这为探索新型绿色的害虫防治提供了依据。  相似文献   
5.
6.
7.
8.
An important question in contemporary sensory neuroscience is how animals perceive their environment and make appropriate behavioral choices based on chemical perceptions. The fruit fly Drosophila melanogaster exhibits robust tastant and odor-evoked behaviors. Understanding how the gustatory and olfactory systems support the perception of these contact and volatile chemicals and translate them into appropriate attraction or avoidance behaviors has made an unprecedented contribution to our knowledge of the organization of chemosensory systems. In this review, I begin by describing the receptors and signaling mechanisms of the Drosophila gustatory and olfactory systems and then highlight their involvement in the control of simple and complex behaviors. The topics addressed include feeding behavior, learning and memory, navigation behavior, neuropeptide modulation of chemosensory behavior, and I conclude with a discussion of recent work that provides insight into pheromone signaling pathways.  相似文献   
9.
Regulatory peptides in fruit fly midgut   总被引:1,自引:0,他引:1  
Regulatory peptides were immunolocalized in the midgut of the fruit fly Drosophila melanogaster. Endocrine cells were found to produce six different peptides: allatostatins A, B and C, neuropeptide F, diuretic hormone 31, and the tachykinins. Small neuropeptide-F (sNPF) was found in neurons in the hypocerebral ganglion innervating the anterior midgut, whereas pigment-dispersing factor was found in nerves on the most posterior part of the posterior midgut. Neuropeptide-F (NPF)-producing endocrine cells were located in the anterior and middle midgut and in the very first part of the posterior midgut. All NPF endocrine cells also produced tachykinins. Endocrine cells containing diuretic hormone 31 were found in the caudal half of the posterior midgut; these cells also produced tachykinins. Other endocrine cells produced exclusively tachykinins in the anterior and posterior extemities of the midgut. Allatostatin-immunoreactive endocrine cells were present throughout the midgut. Those in the caudal half of the posterior midgut produced allatostatins A, whereas those in the anterior, middle, and first half of the posterior midgut produced allatostatin C. In the middle of the posterior midgut, some endocrine cells produced both allatostatins A and C. Allatostatin-C-immunoreactive endocrine cells were particularly prominent in the first half of the posterior midgut. Allatostatin B/MIP-immunoreactive cells were not consistently found and, when present, were only weakly immunoreactive, forming a subgroup of the allatostatin-C-immunoreactive cells in the posterior midgut. Previous work on Drosophila and other insect species suggested that (FM)RFamide-immunoreactive endocrine cells in the insect midgut could produce NPF, sNPF, myosuppressin, and/or sulfakinins. Using a combination of specific antisera to these peptides and transgenic fly models, we showed that the endocrine cells in the adult Drosophila midgut produced exclusively NPF. Although the Drosophila insulin gene Ilp3 was abundantly expressed in the midgut, Ilp3 was not expressed in endocrine cells, but in midgut muscle.  相似文献   
10.
We have examined the effects of the Led-NPF-I peptide (Ala-Arg-Gly-Pro-Gln-Leu-Arg-Leu-Arg-Phe-amide) and a series of ten analogues on the heart contractile activity of Tenebrio molitor and Zophobas atratus, and the structure-activity relationships for cardioactive action of Led-NPF-I were established. A video microscopy technique and computer-based method of data acquisition and analysis were used to study the action of the peptides on continuously perfused heart preparations. Cardiac activity was progressively inhibited by Led-NPF-I when the peptide concentrations were increased from 10(-9) to 10(-5) M. Substitution of the L-proline residue at position 4 of the native peptide with hydroxyproline, valine or D-proline caused a loss of cardioinhibitory activity. Also, replacement of arginine residues at all three positions 2, 7 and 9 with another basic amino acid histidine, reduces cardioinhibitory action of Led-NPF-I. Some modifications of the C-terminal residues, as the Phe(4-NO2)-, Phe(4-NH2)- and Phe(4-NMe2)-analogues, resulted in agonistic peptides with biological activity similar to that of the native peptide. However, three other C-terminal analogues tested [Tyr10]-, [D-Phe10]-Led-NPF-I, and Ala-Arg-Gly-Pro-Gln-Leu-Arg-Leu-Arg-Phe-OH were inactive in the heart bioassay, which suggests that this end of the amino acid chain may play an important role in bioactivity and interaction of the native peptide with its receptor on the myocardium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号