首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2009年   1篇
  2007年   2篇
  2004年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1978年   1篇
排序方式: 共有17条查询结果,搜索用时 46 毫秒
1.
2.
Temperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2–deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis. The small aromatic compound ‘Heatin’, containing 1-iminomethyl-2-naphthol as a pharmacophore, was selected as an enhancer of elongation growth. We show that ARABIDOPSIS ALDEHYDE OXIDASES redundantly contribute to Heatin-mediated hypocotyl elongation. Following a chemical proteomics approach, the members of the NITRILASE1-subfamily of auxin biosynthesis enzymes were identified among the molecular targets of Heatin. Our data reveal that nitrilases are involved in promotion of hypocotyl elongation in response to high temperature and Heatin-mediated hypocotyl elongation requires the NITRILASE1-subfamily members, NIT1 and NIT2. Heatin inhibits NIT1-subfamily enzymatic activity in vitro and the application of Heatin accordingly results in the accumulation of NIT1-subfamily substrate indole-3-acetonitrile in vivo. However, levels of the NIT1-subfamily product, bioactive auxin (indole-3-acetic acid), were also significantly increased. It is likely that the stimulation of hypocotyl elongation by Heatin might be independent of its observed interaction with NITRILASE1-subfamily members. However, nitrilases may contribute to the Heatin response by stimulating indole-3-acetic acid biosynthesis in an indirect way. Heatin and its functional analogues present novel chemical entities for studying auxin biology.  相似文献   
3.

Background

The nuclear genome of Chlamydomonas reinhardtii encodes a dozen hemoglobins of the truncated lineage. Four of these, named THB1–4, contain a single ~130-residue globin unit. THB1, which is cytoplasmic and capable of nitric oxide dioxygenation activity, uses a histidine and a lysine as axial ligands to the heme iron. In the present report, we compared THB2, THB3, and THB4 to THB1 to gain structural and functional insights into algal globins.

Methods

We inspected properties of the globin domains prepared by recombinant means through site-directed mutagenesis, electronic absorption, CD, and NMR spectroscopies, and X-ray crystallography.

Results

Recombinant THB3, which lacks the proximal histidine but has a distal histidine, binds heme weakly. NMR data demonstrate that the recombinant domains of THB2 and THB4 coordinate the ferrous heme iron with the proximal histidine and a lysine from the distal helix. An X-ray structure of ferric THB4 confirms lysine coordination. THB1, THB2, and THB4 have reduction potentials between ?65 and ?100 mV, are capable of nitric oxide dioxygenation, are reduced at different rates by the diaphorase domain of C. reinhardtii nitrate reductase, and show different response to peroxide treatment.

Conclusions

Three single-domain C. reinhardtii hemoglobins use lysine as a distal heme ligand in both Fe(III) and Fe(II) oxidation states. This common feature is likely related to enzymatic activity in the management of reactive oxygen species.

General significance

Primary structure analysis of hemoglobins has limited power in the prediction of heme ligation. Experimental determination reveals variations in this essential property across the superfamily.  相似文献   
4.
Metallo-beta-lactamases (MBLs) efficiently hydrolyze and thereby inactivate various beta-lactam antibiotics in clinical use. Their potential to evolve into more efficient enzymes threatens public health. Recently, we have identified the designed F218Y mutant of IMP-1 as an enzyme with superior catalytic efficiency compared to the wild-type. Thus, it may be found in clinical isolates in the future. In an effort to elucidate the molecular mechanisms involved in enhanced activity, we carried out molecular dynamics simulations of ten MBL variants in complex with a cefotaxime intermediate. The stability of these near-transition state enzyme-substrate intermediate complexes was modeled and compared to the experimental catalytic efficiencies k(cat)/K(M). For each of the ten complexes ten independent simulations were performed. In each simulation the temperature was gradually increased and determined upon breakdown of the complex. Rankings based on the experimental catalytic efficiencies and the data from computer simulations were in good agreement. From trajectory analysis of stable simulations, the combination of Tyr218 and Ser262 was found to lead to an altered hydrogen bonding network, which translates into a closing down movement of a beta-hairpin loop covering the active site. These observations may explain the significantly decreased K(M) and increased k(cat)/K(M) values of this variant toward all substrates recently tested in experiment. Previously, we have discovered that mutations G262S (yielding IMP-1) and G262A in IMP-6 stabilize the Zn(II) ligand His263 and thus the enzyme-substrate intermediate complex through a domino effect, which enhances conversion of drugs like ceftazidime, penicillins, and imipenem. Together, the domino effect and the altered beta-hairpin loop conformation explain how IMP-6 can evolve through mutations G262S and F218Y into an enzyme with up to one order of magnitude increased catalytic efficiencies toward these important antibiotics. Furthermore, the previously proposed binding of a third zinc ion close to the active site of IMP-6 mutant S121G was corroborated by our simulations.  相似文献   
5.
Nitrite reductase (NiR) is the second enzyme in the nitrate assimilatory pathway reducing nitrite to ammonium. The expression of the NiR gene is induced upon the addition of nitrate. In an earlier study, a 130 bp upstream region of the spinach NiR gene promoter, located between –330 to –200, was shown to be necessary for nitrate induction of -glucuronidase (GUS) expression in tissue-specific manner in transgenic tobacco plant [28]. To further delineate the cis-acting elements involved in nitrate regulation of NiR gene expression, transgenic tobacco plants were generated with 5 deletions in the–330 to –200 region of the spinach NiR gene promoter fused to the GUS gene. Plants with the NiR promoter deleted to –230 showed a considerable increase in GUS activity in the presence of nitrate, indicating that the 30 bp region between –230 to –200 is crucial for nitrate-regulated expression of NiR. In vivo DMS footprinting of the –300 to –130 region of the NiR promoter in leaf tissues from two independent transgenic lines revealed several nitrate-inducible footprints. Footprinting within the –230 to –181 region revealed factor binding to two adjacent GATA elements separated by 24 bp. This arrangement of GATA elements is analogous to cis-regulatory sequences found in the promoters of nitrate-inducible genes of Neurospora crassa, regulated by the NIT2 Zn-finger protein. The –240 to –110 fragment of the NiR promoter, which contains two NIT2 consensus core elements, bound in vitro to a fusion protein comprising the zinc finger domain of the N. crassa NIT2 protein. The data presented here show that nitrate-inducible expression of the NiR gene is mediated by nitrate-specific binding of trans-acting factors to sequences preserved between fungi and higher plants.  相似文献   
6.
A new transposable element, Tcr3, was identified in the unicellular green alga Chlamydomonas reinhardtii. The Tcr3 element contained imperfect terminal inverted repeat sequences of 56 bp and created a 2 bp target site duplication upon insertion. Insertion of Tcr3 into the 3-untranslated region of the NIT8 gene, which is essential for nitrate assimilation, prevented expression of the gene. Excision of the Tcr3 element correlated with reversion of the mutant phenotype and left behind a 3 bp footprint. Tcr3 was found in all Chlamydomonas isolates tested and should prove to be useful for transposon-tagging experiments in Chlamydomonas.  相似文献   
7.
TBC1D1 plays an important role in numerous fundamental physiological processes including muscle metabolism, regulation of whole body energy homeostasis and lipid metabolism. The objective of the present study was to identify single nucleotide polymorphisms (SNPs) in chicken TBC1D1 using 128 Erlang mountainous chickens and to determine if these SNPs are associated with carcass traits. The approach consisted of sequencing TBC1D1 using a panel of DNA from different individuals, revealing twenty-two SNPs. Among these SNPs, two polymorphisms (g.69307744C>T and g.69307608T>G) of block 1, four polymorphisms (g.69322320C>T, g.69322314G>A, g.69317290A>G and g.69317276T>C) of block 2 and four polymorphisms of block 3 (g.69349746G>A, g.69349736C>G, g.69349727C>T and g.69349694C>T) exhibited a high degree of linkage disequilibrium in all test populations. An association analysis was performed between the twenty-two SNPs and seven performance traits. SNPs g.69307744C>T, g.69340192G>A and g.69355665T>C were demonstrated to have a strong effect on liveweight (BW), carcass weight (CW), semi-eviscerated weight (SEW) and eviscerated weight (EW) and g.69340070C>T polymorphism was related to BW, SEW and BMW in chicken populations. However, for the other SNPs, there were no significant correlations between different genotypes and carcass traits. Meanwhile, haplotype CT–TG of block 1 and combined genotype AG–TT–AC–CT of block 3 were significantly associated with BW, CW, SEW and EW. Overall, our results provide evidence that polymorphisms in TBC1D1 are associated with carcass traits and would be a useful candidate gene in selection programs for improving carcass traits.  相似文献   
8.
 The Arabidopsis thaliana genome has four nitrilase (nitrile aminohydrolase, EC 3.5.5.1) genes (NIT1 to NIT4). These nitrilases catalyze hydrolysis of indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA). Growth of A. thaliana is inhibited by IAN probably due to hydrolysis of IAN to IAA, while the tobacco (Nicotiana tabacum) genome has only NIT4 homologs and is resistant to IAN. In this study, we introduced A. thaliana NIT1 to NIT4 into tobacco. Introduction of NIT1, NIT2 or NIT3 into tobacco conferred growth inhibition by IAN. NIT2 transgenic plants were highly sensitive to IAN, and NIT1 and NIT3 transgenic plants were moderately sensitive. On the other hand, NIT4 transgenic plants were less sensitive to IAN, although some morphological changes in the roots were observed as the wild-type tobacco. These findings suggest that the ability of transgenic tobacco to convert IAN to IAA in vivo is markedly different among transgenes of NIT1 to NIT4. Received: 22 November 1999 / Revision received: 28 January 2000 / Accepted: 4 February 2000  相似文献   
9.
A conserved mechanism for nitrile metabolism in bacteria and plants   总被引:1,自引:0,他引:1  
Pseudomonas fluorescens SBW25 is a plant growth-promoting bacterium that efficiently colonises the leaf surfaces and rhizosphere of a range of plants. Previous studies have identified a putative plant-induced nitrilase gene ( pinA ) in P. fluorescens SBW25 that is expressed in the rhizosphere of sugar beet plants. Nitrilase enzymes have been characterised in plants, bacteria and fungi and are thought to be important in detoxification of nitriles, utilisation of nitrogen and synthesis of plant hormones. We reveal that pinA is a NIT4-type nitrilase that catalyses the hydrolysis of β-cyano- l -alanine, a nitrile common in the plant environment and an intermediate in the cyanide detoxification pathway in plants. In plants cyanide is converted to β-cyano- l -alanine, which is subsequently detoxified to aspartic acid and ammonia by NIT4. In P. fluorescens SBW25 pinA is induced in the presence of β-cyano- l -alanine, and the β-cyano- l -alanine precursors cyanide and cysteine. pinA allows P. fluorescens SBW25 to use β-cyano- l -alanine as a nitrogen source and to tolerate toxic concentrations of this nitrile. In addition, pinA is shown to complement a NIT4 mutation in Arabidopsis thaliana , enabling plants to grow in concentrations of β-cyano- l -alanine that would otherwise prove lethal. Interestingly, over-expression of pinA in wild-type A. thaliana not only resulted in increased growth in high concentrations of β-cyano- l -alanine, but also resulted in increased root elongation in the absence of exogenous β-cyano- l -alanine, demonstrating that β-cyano- l -alanine nitrilase activity can have a significant effect on root physiology and root development.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号