首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2009年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Lipid peroxidation has been implicated in the pathophysiological sequelae of human neurodegenerative disorders. It is recognized that quantification of lipid peroxidation is best assessed in vivo by measuring a series of prostaglandin (PG) F2-like compounds termed F2-isoprostanes (IsoPs) in tissues in which arachidonic acid is abundant. Unlike other organs, the major polyunsaturated fatty acid (PUFA) in the brain is docosahexaenoic acid (DHA, C22:6 omega-6), and this fatty acid is particularly enriched in neurons. We have previously reported that DHA undergoes oxidation in vitro and in vivo resulting in the formation of a series of F2-IsoP-like compounds termed F4-neuroprostanes (F4-NPs). We recently chemically synthesized one F4-NP, 17-F4c-NP, converted it to an 18O-labeled derivative, and utilized it as an internal standard to develop an assay to quantify endogenous production of F4-NPs by gas chromatography (GC)/negative ion chemical ionization (NICI) mass spectrometry (MS). The assay is highly precise and accurate. The lower limit of sensitivity is approximately 10 pg. Levels of F4-NPs in brain tissue from rodents were 8.7 +/- 2.0 ng/g wet weight (mean +/- S.D.). Levels of the F4-NPs in brains from normal humans were found to be 4.9 +/- 0.6 ng/g (mean +/- S.D.) and were 2.1-fold higher in affected regions of brains from humans with Alzheimer's disease (P = 0.02). Thus, this assay provides a sensitive and accurate method to assess oxidation of DHA in animal and human tissues and will allow for the further elucidation of the role of oxidative injury to the central nervous system in association with human neurodegenerative disorders.  相似文献   
2.
Both 1,2-naphthoquinone (1,2-NPQ) and 1,4-naphthoquinone (1,4-NPQ) are reactive metabolites of naphthalene that are thought to be responsible for the naphthalene-induced cytotoxicity and genotoxicity. The aim of this study was to investigate the cumulative tissue dose of 1,2-NPQ and 1,4-NPQ in human serum derived from blood donors in Taiwan via measurements of albumin adducts by a methodology, which employs trifluoroacetic acid anhydride and methanesulfonic acid to selectively cleave cysteinyl adducts on proteins. Both 1,2-NPQ and 1,4-NPQ adducts were detected in all male and female subjects (n = 22). The median levels of 1,2-NPQ adduct in human subjects were estimated to be 268 (range 139-857) and 203 (range 128-1352) (pmol/g) in male (n = 11) and female (n = 11) subjects, respectively. In contrast, the median levels of 1,4-NPQ adduct were estimated to be 45.0 (range 22.0-117) and 38.9 (range 21.5-172) (pmol/g) in male and female subjects, respectively. We noticed that levels of 1,2-NPQ adduct were significantly correlated with those of 1,4-NPQ adduct (correlation coefficient r = 0.643, p < 0.01). Results from in vitro experiments confirmed that the production of naphthoquinones-derived adducts on serum albumin increased with increased concentration of naphthoquinones (0-100 μM). Linear relationships were observed over the range of concentration. Time-course experiments suggested that both 1,2-NPQ and 1,4-NPQ-derived adducts rapidly reached maximum values at 10 min mark and remained constant thereafter. The reaction rate constant analyses indicated that the second-order rate constants, representing in vitro reactions between naphthoquinones and cysteine residues of serum albumin, were estimated to be 0.0044/0.0002 L(g protein)−1 h−1, respectively. Overall, the cumulative tissue doses of 1,4-NPQ (217-316 nM h) in male and female subjects were ∼3-fold greater than those of 1,2-NPQ (76-98 nM h) in the study population. The initial concentrations of serum 1,2-NPQ and 1,4-NPQ in the study population were estimated to be between 145-188 and 807-1175 nM, respectively. We conclude that the relatively large amounts of naphthoquinones present in human serum may point to toxicological consequences.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号