首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
Abstract: We have shown previously that a neurofilament (NF)-associated kinase (NFAK) extracted from chicken NF preparations phosphorylates selectively the middle molecular mass NF subunit (NF-M). Here we show that the major kinase activity in NFAK is indistinguishable from enzymes of the casein kinase I (CKI) family based on the following criteria: (1) inhibition of NFAK phosphorylation by the selective CKI inhibitor CKI-7, (2) the similarity in substrate specificity of NFAK and authentic CKI, (3) the correspondence of two-dimensional phosphopeptide maps of NF-M phosphorylated in vitro by NFAK with those generated by CKI under similar conditions, and (4) immunological cross-reactivity of NFAK with an antibody raised against CKI. We have also identified Ser502, Ser528, and Ser536 as phosphorylation sites by NFAK/CKI in vitro, each of which is also phosphorylated in vivo. All three serines are found in peptides with CKI phosphorylation consensus sequences, and Ser528 and Ser536 and flanking amino acids are highly conserved in higher vertebrate NF-M sequences. Neither Ser502 nor Ser536 has been identified previously as NF-M phosphorylation sites.  相似文献   
2.
Phosphorylation of types III and IV intermediate filaments (IFs) is known to regulate their organization and function. Phosphorylation of the amino-terminal head domain sites on types III and IV IF proteins plays a key role in the assembly/disassembly of IF subunits into 10 nm filaments, and influences the phosphorylation of sites on the carboxyl-terminal tail domain. These phosphorylation events are largely under the control of second messenger-dependent protein kinases and provide the cells a mechanism to reorganize the IFs in response to the changes in second messenger levels. In mitotic cells, Cdk1, Rho kinase, PAK1 and Aurora-B kinase are believed to regulate vimentin and glial fibrillary acidic protein phosphorylation in a spatio-temporal manner. In neurons, the carboxyl-terminal tail domains of the NF-M and NF-H subunits of heteropolymeric neurofilaments (NFs) are highly phosphorylated by proline-directed protein kinases. The phosphorylation of carboxyl-terminal tail domains of NFs has been suspected to play roles in forming cross-bridges between NFs and microtubules, slowing axonal transport and promoting their integration into cytoskeleton lattice and, in doing so, to control axonal caliber and stabilize the axon. The role of IF phosphorylation in disease pathobiology is discussed.  相似文献   
3.
4.
Neurofilaments are the major components of the neuronal cytoskeleton, and accumulations of these proteins are associated with several important human diseases. Here we report the cloning and sequencing of bovine NF-M, the first NF-M cloned from a large domestic mammal. The bovine sequence proves to be generally more similar to that of human NF-M than the previously described mammalian sequences, suggesting that bovine neurofilaments are a useful model for biochemical studies of application to humans. However, we noted some unusual features within the 16 lys-ser-pro (KSP2) type phosphopeptide repeats and also note that the number of these repeats correlates well with the size of animal. We also characterized two in vitro calpain cleavage sites by direct peptide sequencing, finding that both are located in the glutamic acid rich E segment. Finally, we show biochemically that the more abundant and stable of these calpain fragments can also be detected in vivo.  相似文献   
5.
6.
Lipid peroxidation is a complex process involving the interaction of oxygen-derived free radicals with polyunsaturated fatty acids, resulting in a variety of highly reactive electrophilic aldehydes. Since 1975, lipid peroxidation has been extensively studied in a variety of organisms. As neurodegenerative diseases became better understood, research establishing a link between this form of oxidative damage, neurodegeneration, and disease has provided a wealth of knowledge to the scientific community. With the advent of proteomics in 1995, the identification of biomarkers for neurodegenerative disorders became of paramount importance to better understand disease pathogenesis and develop potential therapeutic strategies. This review focuses on the relationship between lipid peroxidation and neurodegenerative diseases. It also demonstrates how findings in current research support the common themes of altered energy metabolism and mitochondrial dysfunction in neurodegenerative disorders.  相似文献   
7.
Liu Z  Gao W  Wang Y  Zhang W  Liu H  Li Z 《Peptides》2011,32(6):1244-1248
Neuregulin-1β (NRG-1β) signaling has multiple functions in neurons. To assess NRG-1β on neurite outgrowth and neuronal migration in vitro, organotypic dorsal root ganglion (DRG) neuronal culture model was established. Neurite outgrowth and neuronal migration were evaluated using this culture model in the presence (5 nmol/L, 10 nmol/L, 20 nmol/L) or absence of NRG-1β. Neurofilament 200 (NF-200)-immunoreactive (IR) neurons were determined as the migrating neurons. The number of nerve fiber bundles extended from DRG explant increased significantly in the presence of NRG-1β (5 nmol/L, 23.0 ± 2.2, P < 0.05; 10 nmol/L, 27.0 ± 2.7, P < 0.001; 20 nmol/L, 30.8 ± 3.7, P < 0.001) as compared with that in the absence of NRG-1β (19.0 ± 2.2). The number of neurons migrating from DRG explants increased significantly in the presence of NRG-1β (5 nmol/L, 39.6 ± 5.0, P < 0.05; 10 nmol/L, 54.6 ± 6.7, P < 0.001; 20 nmol/L, 62.2 ± 5.7, P < 0.001) as compared with that in the absence of NRG-1β (31.6 ± 4.0). Moreover, the increase of the number of nerve fiber bundles and the number of migrating NF-200-IR neurons was dose-dependent for NRG-1β addition. The data in this study imply that NRG-1β promotes neurite outgrowth and neuronal migration from DRG explants in vitro.  相似文献   
8.
Summary. Neurofilaments (NFs) are integral constituents of the neuron playing a major role in brain development, maintenance, regeneration and the pattern of expression for NFs suggests their contribution to plasticity of the neuronal cytoskeleton and creating and maintaining neuronal architecture. Using immune-histochemical techniques the altered expression of NFs in Down syndrome (DS) and Alzheimer's disease (AD) has been already published but as no corresponding systematic immune-chemical study has been reported yet, we decided to determine proteins levels of three NFs in several brain regions of DS and AD brain. We evaluated immunoreactive NF-H, NF-M and NF-L levels using Western blotting in brain regions temporal, occipital cortex and thalamus of patients with DS (n = 9), AD (n = 9) and controls (n = 12). We found significantly increased NF-H in temporal cortex (controls: means 0.74 ± 0.39 SD; DS: means 3.01 ± 2.18 SD) of DS patients and a significant decrease of NF-L in occipital cortex of DS and AD patients (controls: means 1.19 ± 0.86 SD; DS: means 0.35 ± 0.20; AD: 0.20 ± 0.11 SD). We propose that the increase of NF-H in temporal cortex of DS brain is due to neuritic sprouting as observed in immune-histochemical studies. The increase may not be caused by the known accumulation of NFs in plaques, tangles or Lewy bodies due to our solubilization protocol. The decrease of NF-L in occipital cortex of DS and AD patients may well be reflecting neuronal loss. Altogether, however, we suggest that NFs are not reliable markers for neuronal death, a hallmark of both neurodegenerative diseases, in DS or AD. The increase of NF-H in DS or the decrease of NF-L in DS and AD leaves the other NFs unchanged, which points to dysregulation in DS and AD and raises the question of impaired structural assembly of neurofilaments. Received July 19, 2000 Accepted July 28, 2000  相似文献   
9.
The phosphorylated carboxyl-terminal "tail" domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681-693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail-deleted (NF-MtailDelta) mutant mice using an embryonic stem cell-mediated "gene knockin" approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailDelta mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail-mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M.  相似文献   
10.
Excessive accumulation of neurofilaments in the cell bodies and proximal axons of motor neurons is a major pathological hallmark of motor neuron diseases. In this communication we provide evidence that the neurofilament light subunit (68 kDa) and G-actin are capable of forming a stable interaction. Cytochalasin B, a cytoskeleton disrupting agent that interrupts actin-based microfilaments, caused aggregation of neurofilaments in cultured mesencephalic dopaminergic neurons, suggesting a possible interaction between neurofilaments and actin; which was tested further by using crosslinking reaction and affinity chromatography techniques. In the cross-linking experiment, G-actin interacted with individual neurofilament subunits and covalently cross-linked disuccinimidyl suberate, a homobifunctional cross-linking reagent. Furthermore, G-actin was extensively cross-linked to the light neurofilament subunit with this reagent. The other two neurofilament subunits showed no cross-linking to G-actin. Moreover, neurofilament subunits were retained on a G-actin coupled affinity column and were eluted from this column by increasing salt concentration. All three neurofilament subunits became bound to the G-actin affinity column. However, a portion of the 160 and 200 kDa neurofilament subunits did not bind to the column, and the remainder of these two subunits eluted prior to the 68 kDa subunit, suggesting that the light subunit exhibited the highest affinity for G-actin. Moreover, neurofilaments demonstrated little or no binding to F-actin coupled affinity columns. The phosphorylation of neurofilament proteins with protein kinase C reduced its cross-linking to G-actin. The results of these studies are interpreted to suggest that the interaction between neurofilaments and actin, regulated by neurofilament phosphorylation, may play a role in maintaining the structure and hence the function of dopaminergic neurons in culture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号