首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  2023年   1篇
  2021年   1篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Migrating birds require en route habitats to rest and refuel. Yet, habitat use has never been integrated with passage to understand the factors that determine where and when birds stopover during spring and autumn migration. Here, we introduce the stopover‐to‐passage ratio (SPR), the percentage of passage migrants that stop in an area, and use 8 years of data from 12 weather surveillance radars to estimate over 50% SPR during spring and autumn through the Gulf of Mexico and Atlantic coasts of the south‐eastern US, the most prominent corridor for North America’s migratory birds. During stopovers, birds concentrated close to the coast during spring and inland in forested landscapes during autumn, suggesting seasonal differences in habitat function and highlighting the vital role of stopover habitats in sustaining migratory communities. Beyond advancing understanding of migration ecology, SPR will facilitate conservation through identification of sites that are disproportionally selected for stopover by migrating birds.  相似文献   
2.
To protect and restore wintering waterfowl habitat, managers require knowledge of routine wintering waterfowl movements and habitat use. During preliminary screening of Doppler weather radar data we observed biological movements consistent with routine foraging flights of wintering waterfowl known to occur near Lacassine National Wildlife Refuge (NWR), Louisiana. During the winters of 2004–2005 and 2005–2006, we conducted field surveys to identify the source of the radar echoes emanating from Lacassine NWR. We compared field data to weather radar reflectivity data. Spatial and temporal patterns consistent with foraging flight movements appeared in weather radar data on all dates of field surveys. Dabbling ducks were the dominant taxa flying within the radar beam during the foraging flight period. Using linear regression, we found a positive log-linear relationship between average radar reflectivity (Z) and number of birds detected over the study area (P < 0.001, r2 = 0.62, n = 40). Ground observations and the statistically significant relationship between radar data and field data confirm that Doppler weather radar recorded the foraging flights of dabbling ducks. Weather radars may be effective tools for wintering waterfowl management because they provide broad-scale views of both diurnal and nocturnal movements. In addition, an extensive data archive enables the study of wintering waterfowl response to habitat loss, agricultural practices, wetland restoration, and other research questions that require multiple years of data. © 2011 The Wildlife Society.  相似文献   
3.
Concern about the sustainability of intercontinental‐scale migration systems grows apace with global change. Traditional organism‐centred approaches to this problem have provided insights at the population level, but not at the systems level. We are sceptical that an accumulation of data from a species‐by‐species approach will yield an understanding of these systems in the near term. As an alternative, we advocate a new research programme that grows from an explicitly system‐based framework that leverages existing Earth observation infrastructure to make inferences directly at the macrosystem level. We illustrate how this approach can be used to generate and test system‐level predictions, using NEXRAD radar data as an example. We urge organismal ecologists to recognize that some of the most urgent migration questions are at the macrosystem scale and that tackling these questions requires an interdisciplinary approach if we are to make progress at a pace that exceeds that of climate change.  相似文献   
4.
ABSTRACT Local and migratory movements aloft have important implications for the ecology and conservation of birds, but are difficult to quantify. Weather surveillance radar (WSR) offers a unique tool for observing movements of birds, but until now has been used primarily to address broad taxonomic questions. Herein, we demonstrate how natural history information and ground‐truthing can be used to answer quantitative and taxon‐specific questions regarding bird movements on WSR. We found that super‐resolution Level II data from the National Oceanic and Atmospheric Administration's mass storage system was the most effective format and source of WSR data, and that several software packages were needed for thorough analysis of WSR data. Using WSR, we identified potential movements of birds emigrating from a waterfowl stopover area in Illinois in fall (1 September–31 December) 2006 and 2007. We compared spatial and temporal patterns of these movements to the natural history of taxa occupying the source habitat and classified these radar targets as dabbling ducks (tribe Anatini). A portable X‐band radar measured the cruising heights of ducks at 400–600 m. During fall 2008, we conducted ground‐truthing with a thermal infrared camera to enumerate birds passing over our field site during nocturnal migration events. This estimate of bird density, paired with an associated sample of WSR echo strength, provided a mean radar cross section the same as dabbling ducks (112.5 cm2) and supported our natural‐history‐based classification. Thermal infrared‐estimated duck densities explained most of the variation (R2= 0.91) in WSR echo strength across seven migration events of varying intensities, suggesting that radar cross sections of dabbling ducks and WSR reflectivity can be used to estimate duck numbers in other comparable contexts. Our results suggest that careful investigation of the spatial and temporal patterns of movements on radar, along with field‐based ground‐truthing, can be used to study and quantify the movements of specific bird taxa.  相似文献   
5.
ABSTRACT For decades, researchers have successfully used ground‐based surveys to understand localized spatial and temporal patterns in stopover habitat use by migratory birds. Recent technological advances with WSR‐88D radar now allow such investigations on much broader spatial scales. Both methods are assumed to accurately quantify patterns in migrant bird communities, yet information is lacking regarding relationships between radar estimates of migration and different ground‐based monitoring methods. From 2005 to 2007, we monitored migrant communities on or near two Department of Defense installations in the spring (Ft. Polk Military Complex, LA; U.S. Army Test and Evaluation Command, Yuma Proving Ground, AZ) and on two installations in the fall (Ft. Polk Military Complex, LA; Eglin Air Force Base, FL) using both ground‐based transect surveys and radar imagery of birds aloft. We modeled daily changes in migrant abundance and positive and negative species turnover measured on the ground as a function of radar estimates of migrant exodus and input densities. Radar data were not significant predictors of any response variable in any season either in the southeastern or southwestern United States, indicating a disparity between the results obtained using different methods. Multiple unique sources of error associated with each technique likely contributed to the conflicting outcomes, and researchers should take great care when selecting monitoring methods appropriate to address research questions, effects of management practices, or when comparing the results of migration studies using different survey techniques.  相似文献   
6.
Organisms have been shifting their timing of life history events (phenology) in response to changes in the emergence of resources induced by climate change. Yet understanding these patterns at large scales and across long time series is often challenging. Here we used the US weather surveillance radar network to collect data on the timing of communal swallow and martin roosts and evaluate the scale of phenological shifts and its potential association with temperature. The discrete morning departures of these aggregated aerial insectivores from ground-based roosting locations are detected by radars around sunrise. For the first time, we applied a machine learning algorithm to automatically detect and track these large-scale behaviors. We used 21 years of data from 12 weather surveillance radar stations in the Great Lakes region to quantify the phenology in roosting behavior of aerial insectivores at three spatial levels: local roost cluster, radar station, and across the Great Lakes region. We show that their peak roosting activity timing has advanced by 2.26 days per decade at the regional scale. Similar signals of advancement were found at the station scale, but not at the local roost cluster scale. Air temperature trends in the Great Lakes region during the active roosting period were predictive of later stages of roosting phenology trends (75% and 90% passage dates). Our study represents one of the longest-term broad-scale phenology examinations of avian aerial insectivore species responding to environmental change and provides a stepping stone for examining potential phenological mismatches across trophic levels at broad spatial scales.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号