首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   7篇
  国内免费   10篇
  49篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   8篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  1978年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
We report the results of a 2‐year study of effects of the elevated (current ambient plus 350 μmol CO2 mol?1) atmospheric CO2 concentration (Ca) on net ecosystem CO2 exchange (NEE) of a scrub–oak ecosystem. The measurements were made in open‐top chambers (OTCs) modified to function as open gas‐exchange systems. The OTCs enclosed samples of the ecosystem (ca. 10 m2 surface area) that had regenerated after a fire, 5 years before, in either current ambient or elevated Ca. Throughout the study, elevated Ca increased maximum NEE (NEEmax) and the apparent quantum yield of the NEE (φNEE) during the photoperiod. The magnitude of the stimulation of NEEmax, expressed per unit ground area, was seasonal, rising from 50% in the winter to 180% in the summer. The key to this stimulation was effects of elevated Ca, and their interaction with the seasonal changes in the environment, on ecosystem leaf area index, photosynthesis and respiration. The separation of these factors was difficult. When expressed per unit leaf area the stimulation of the NEEmax ranged from 7% to 60%, with the increase being dependent on increasing soil water content (Wsoil). At night, the CO2 effluxes from the ecosystem (NEEnight) were on an average 39% higher in elevated Ca. However, the increase varied between 6% and 64%, and had no clear seasonality. The partitioning of NEEnight into its belowground (Rbelow) and aboveground (Rabove) components was carried out in the winter only. A 35% and 27% stimulation of NEEnight in December 1999 and 2000, respectively, was largely due to a 26% and 28% stimulation of Rbelow in the respective periods, because Rbelow constituted ca. 87% of NEEnight. The 37% and 42% stimulation of Rabove in December 1999 and 2000, respectively, was less than the 65% and 80% stimulation of the aboveground biomass by elevated Ca at these times. An increase in the relative amount of the aboveground biomass in woody tissue, combined with a decrease in the specific rate of stem respiration of the dominant species Quercus myrtifolia in elevated Ca, was responsible for this effect. Throughout this study, elevated Ca had a greater effect on carbon uptake than on carbon loss, in terms of both the absolute flux and relative stimulation. Consequently, for this scrub–oak ecosystem carbon sequestration was greater in the elevated Ca during this 2‐year study period.  相似文献   
2.
张嘉荣  王咏薇  张弥  刁一伟  刘诚 《生态学报》2017,37(20):6679-6690
植被光合呼吸模型(VPRM)关键参数的确定和优化是准确计算生态系统净CO_2交换(NEE)的基础。利用中国通量观测研究联盟(China FLUX)长白山站温带阔叶红松林2005年的通量观测资料,对VPRM的4个参数(最大光能利用率ε_0、光照为半饱和条件下光合有效辐射值PAR0和呼吸参数(α、β))进行优化,并使用2006年的观测资料对参数优化前后的模拟结果进行评估。结果表明:参数优化后,VPRM能够较好地模拟长白山地区2006年植物生长季NEE的变化。对30min NEE模拟的平均误差为-1.81μmol m~(-2)s~(-1),相关系数为0.72,模拟NEE平均日变化的峰值约为观测值的91%,相关系数为0.97。但在植物非生长季模型对森林NEE的模拟效果较差。模型模拟30min NEE的平均误差为0.39μmol m~(-2)s~(-1),相关系数仅为0.10,并且模拟低估NEE平均日变化白天吸收峰值约82%,日变化模拟值与观测值的相关系数为0.50。通过分析不同天气个例,发现模型可以较好地模拟晴天条件下NEE的变化,而对阴雨天NEE的模拟误差较大。该研究有利于提高VPRM模型对温带落叶阔叶林NEE的模拟能力,对进一步改进区域陆地NEE的模拟具有重要意义。  相似文献   
3.
Hydraulic redistribution (HR) of water from moist to drier soils, through plant roots, occurs world‐wide in seasonally dry ecosystems. Although the influence of HR on landscape hydrology and plant water use has been amply demonstrated, HR's effects on microbe‐controlled processes sensitive to soil moisture, including carbon and nutrient cycling at ecosystem scales, remain difficult to observe in the field and have not been integrated into a predictive framework. We incorporated a representation of HR into the Community Land Model (CLM4.5) and found the new model improved predictions of water, energy, and system‐scale carbon fluxes observed by eddy covariance at four seasonally dry yet ecologically diverse temperate and tropical AmeriFlux sites. Modeled plant productivity and microbial activities were differentially stimulated by upward HR, resulting at times in increased plant demand outstripping increased nutrient supply. Modeled plant productivity and microbial activities were diminished by downward HR. Overall, inclusion of HR tended to increase modeled annual ecosystem uptake of CO2 (or reduce annual CO2 release to the atmosphere). Moreover, engagement of CLM4.5′s ground‐truthed fire module indicated that though HR increased modeled fuel load at all four sites, upward HR also moistened surface soil and hydrated vegetation sufficiently to limit the modeled spread of dry season fire and concomitant very large CO2 emissions to the atmosphere. Historically, fire has been a dominant ecological force in many seasonally dry ecosystems, and intensification of soil drought and altered precipitation regimes are expected for seasonally dry ecosystems in the future. HR may play an increasingly important role mitigating development of extreme soil water potential gradients and associated limitations on plant and soil microbial activities, and may inhibit the spread of fire in seasonally dry ecosystems.  相似文献   
4.
使用LPJ-GUESS植被动态模型, 在北京山区研究了未来100a以辽东栎 (Quercus liaotungensis) 为优势种的落叶阔叶林、以白桦 (Betula platyphylla) 为主的阔叶林和油松 (Pinus tabulaeformis) 为优势种的针阔混交林的碳变化, 定量分析了生态系统净初级生产力 (NPP) 、土壤异养呼吸 (Rh) 、净生态系统碳交换 (NEE) 和碳生物量 (Carbon bio-mass) 对两种未来气候情景 (SRES A2和B2) 以及相应大气CO2浓度变化情景的响应特征。结果表明:1) 未来100a两种气候情景下3种森林生态系统的NPP和Rh均增加, 并且A2情景下增加的程度更大;2) 由于3种生态系统树种组成的不同, 未来气候情景下各自NPP和Rh增加的比例不同, 导致三者NEE的变化也相异:100a后辽东栎林由碳汇转变为弱碳源, 白桦林仍保持为碳汇但功能减弱, 油松林成为一个更大的碳汇;3) 3种森林生态系统的碳生物量在未来气候情景下均增大, 21世纪末与20世纪末相比:辽东栎林在A2情景下碳生物量增加的比例为27.6%, 大于B2情景下的19.3%;白桦林和油松林在B2情景下碳生物量增加的比例分别为34.2%和52.2%, 大于A2情景下的30.8%和28.4%。  相似文献   
5.
Process‐based models can be classified into: (a) terrestrial biogeochemical models (TBMs), which simulate fluxes of carbon, water and nitrogen coupled within terrestrial ecosystems, and (b) dynamic global vegetation models (DGVMs), which further couple these processes interactively with changes in slow ecosystem processes depending on resource competition, establishment, growth and mortality of different vegetation types. In this study, four models – RHESSys, GOTILWA+, LPJ‐GUESS and ORCHIDEE – representing both modelling approaches were compared and evaluated against benchmarks provided by eddy‐covariance measurements of carbon and water fluxes at 15 forest sites within the EUROFLUX project. Overall, model‐measurement agreement varied greatly among sites. Both modelling approaches have somewhat different strengths, but there was no model among those tested that universally performed well on the two variables evaluated. Small biases and errors suggest that ORCHIDEE and GOTILWA+ performed better in simulating carbon fluxes while LPJ‐GUESS and RHESSys did a better job in simulating water fluxes. In general, the models can be considered as useful tools for studies of climate change impacts on carbon and water cycling in forests. However, the various sources of variation among models simulations and between models simulations and observed data described in this study place some constraints on the results and to some extent reduce their reliability. For example, at most sites in the Mediterranean region all models generally performed poorly most likely because of problems in the representation of water stress effects on both carbon uptake by photosynthesis and carbon release by heterotrophic respiration (Rh). The use of flux data as a means of assessing key processes in models of this type is an important approach to improving model performance. Our results show that the models have value but that further model development is necessary with regard to the representation of the some of the key ecosystem processes.  相似文献   
6.
Various alkyl-(omega-hydroxyalkyl) derivatives related to dibutylnitrosamine (DBN) were investigated for mutagenicity in the absence of liver-activation system. Butyl-(4-hydroxybutyl)-, butyl-(3-hydroxypropyl)-, and butyl-(2-hydroxyethyl)-nitrosamines were so tested and found to be mutagenic for TA 1535 strain of Salmonella typhimurium. In all cases, a simple dose-response relationship was observed. Furthermore, no significant (p less than 0.05) differences in the mutagenicity of the various test compounds were observed as the alkyl sidechain possessing the OH group increased in length. From these results it is siggested that mutagenesis in S. typhimurium by the higher dialkylnitrosamines is partially due to the formation of omega-hydroxylated derivatives in addition to the major mutagenic metabolite derived from alpha-carbon dealkylation.  相似文献   
7.
We compared four existing process‐based stand‐level models of varying complexity (physiological principles in predicting growth, photosynthesis and evapotranspiration, biogeochemical cycles, and stand to ecosystem carbon and evapotranspiration simulator) and a new nested model with 4 years of eddy‐covariance‐measured water vapor (LE) and CO2 (Fc) fluxes at a maturing loblolly pine forest. The nested model resolves the ‘fast’ CO2 and H2O exchange processes using canopy turbulence theories and radiative transfer principles whereas slowly evolving processes were resolved using standard carbon allocation methods modified to improve leaf phenology. This model captured most of the intraannual variations in leaf area index (LAI), net ecosystem exchange (NEE), and LE for this stand in which maximum LAI was not at a steady state. The model comparisons suggest strong linkages between carbon production and LAI variability, especially at seasonal time scales. This linkage necessitates the use of multilayer models to reproduce the seasonal dynamics of LAI, NEE, and LE. However, our findings suggest that increasing model complexity, often justified for resolving faster processes, does not necessarily translate into improved predictive skills at all time scales. Additionally, none of the models tested here adequately captured drought effects on water and CO2 fluxes. Furthermore, the good performance of some models in capturing flux variability on interannual time scales appears to stem from erroneous LAI dynamics and from sensitivity to droughts that injects unrealistic flux variability at longer time scales.  相似文献   
8.
We performed a synthetic analysis of Harvard Forest net ecosystem exchange of CO2 (NEE) time series and a simple ecosystem carbon flux model, the simplified Photosynthesis and Evapo‐Transpiration model (SIPNET). SIPNET runs at a half‐daily time step, and has two vegetation carbon pools, a single aggregated soil carbon pool, and a simple soil moisture sub‐model. We used a stochastic Bayesian parameter estimation technique that provided posterior distributions of the model parameters, conditioned on the observed fluxes and the model equations. In this analysis, we estimated the values of all quantities that govern model behavior, including both rate constants and initial conditions for carbon pools. The purpose of this analysis was not to calibrate the model to make predictions about future fluxes but rather to understand how much information about process controls can be derived directly from the NEE observations. A wavelet decomposition enabled us to assess model performance at multiple time scales from diurnal to decadal. The model parameters are most highly constrained by eddy flux data at daily to seasonal time scales, suggesting that this approach is not useful for calculating annual integrals. However, the ability of the model to fit both the diurnal and seasonal variability patterns in the data simultaneously, using the same parameter set, indicates the effectiveness of this parameter estimation method. Our results quantify the extent to which the eddy covariance data contain information about the ecosystem process parameters represented in the model, and suggest several next steps in model development and observations for improved synthesis of models with flux observations.  相似文献   
9.
Scaling‐up knowledge of land‐atmosphere net ecosystem exchange (NEE) from a single experimental site to numerous perennial grass fields in the Northern Great Plains (NGP) requires appropriate scaling protocols. We addressed this problem using synoptic data available from the Landsat sensor for 10 growing seasons (April 15 to September 30) over a North Dakota field‐site, where we continuously measured CO2 exchange using a Bowen Ratio Energy Balance (BREB) system. NEE observed during the growing season at our field‐site from 1997 to 2006 vacillated with drought and deluge, with net carbon (C) losses to the atmosphere in 2006. We used stepwise linear regression with 10 years of Landsat and NEE data to construct and validate a model for estimating grassland growing‐season NEE from field to landscape scales. Eighty‐nine percent of the variability in NEE was explained by year, live biomass, carbon : nitrogen ratio, day of image acquisition, and annual precipitation. We then applied this model on 20 620 ha of North Dakota perennial grass fields enrolled in the Conservation Reserve Program (CRP), including 1272 fields east of the Missouri River and 165 fields west‐river. Growing‐season NEE for individual CRP fields was highly variable from 1997 to 2006, ranging from ?366 to 692 g C m?2 growing season?1. Mean annual growing‐season fluxes over 10 years for CRP fields located east‐river and west‐river were 317 g C m?2 growing season?1 and 239 g C m?2 growing season?1, respectively. Average cumulative growing‐season NEE modeled for fields east‐ and west‐river diverged from one another in 2002–2006, when west‐river fields received < 70% of the long‐term annual average precipitation during these years. Results indicate assessment of conservation practices on grassland CO2 exchange during the growing season can be remotely estimated at field and landscape scales under variable environmental conditions and should be followed up with similar, spatially explicit investigations of NEE during the dormant season.  相似文献   
10.
Tundra‐atmosphere exchanges of carbon dioxide (CO2) and water vapour were measured near Daring Lake, Northwest Territories in the Canadian Low Arctic for 3 years, 2004–2006. The measurement period spanned late‐winter until the end of the growing period. Mean temperatures during the measurement period varied from about 2 °C less than historical average in 2004 and 2005 to 2 °C greater in 2006. Much of the added warmth in 2006 occurred at the beginning of the study, when snow melt occurred 3 weeks earlier than in the other years. Total precipitation in 2006 (163 mm) was more than double that of the driest year, 2004 (71 mm). The tundra was a net sink for CO2 carbon in all years. Mid‐summer net ecosystem exchange of CO2 (NEE) achieved maximum values of ?1.3 g C m?2 day?1 (2004) to ?1.8 g C m?2 day?1 (2006). Accumulated NEE values over the 109‐day period were ?32,?51 and ?61 g C m?2 in 2004, 2005 and 2006, respectively. The larger CO2 uptake in 2006 was attributed to the early spring coupled with warmer air and soil conditions. In 2004, CO2 uptake was limited by the shorter growing season and mid‐summer dryness, which likely reduced ecosystem productivity. Seasonal total evapotranspiration (ET) ranged from 130 mm (2004) to 181 mm (2006) and varied in accordance with the precipitation received and with the timing of snow melt. Maximum daily ET rates ranged from 2.3 to 2.7 mm day?1, occurring in mid July. Ecosystem water use efficiency (WUEeco) varied slightly between years, ranging from 2.2 in the driest year to 2.5 in the year with intermediate rainfall amounts. In the wettest year, increased soil evaporation may have contributed to a lower WUEeco (2.3). We speculate that most, if not all, of the modest growing season CO2 sink measured at this site could be lost due to fall and winter respiration leading to the tundra being a net CO2 source or CO2 neutral on an annual basis. However, this hypothesis is untested as yet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号