首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   6篇
  国内免费   1篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2014年   9篇
  2013年   10篇
  2012年   3篇
  2011年   3篇
  2010年   10篇
  2009年   3篇
  2008年   9篇
  2007年   3篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   8篇
  2001年   5篇
  2000年   9篇
  1998年   4篇
  1997年   1篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1990年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
1.
ObjectivesSalivary gland regeneration is closely related to the parasympathetic nerve; however, the mechanism behind this relationship is still unclear. The aim of this study was to evaluate the relationship between the parasympathetic nerve and morphological differences during salivary gland regeneration.Materials and MethodsWe used a duct ligation/deligation‐induced submandibular gland regeneration model of Sprague‐Dawley (SD) rats. The regenerated submandibular gland with or without chorda lingual (CL) innervation was detected by haematoxylin–eosin staining, real‐time PCR (RT‐PCR), immunohistochemistry and Western blotting. We counted the number of Ki67‐positive cells to reveal the proliferation process that occurs during gland regeneration. Finally, we examined the expression of the following markers: aquaporin 5, cytokeratin 7, neural cell adhesion molecule (NCAM) and polysialyltransferases.ResultsIntact parasympathetic innervation promoted submandibular gland regeneration. The process of gland regeneration was significantly repressed by cutting off the CL nerve. During gland regeneration, Ki67‐positive cells were mainly found in the ductal structures. Moreover, the expression of NCAM and polysialyltransferases‐1 (PST) expression in the innervation group was significantly increased during early regeneration and decreased in the late stages. In the denervated submandibular glands, the expression of NCAM decreased during regeneration.ConclusionsOur findings revealed that the regeneration of submandibular glands with intact parasympathetic innervation was associated with duct cell proliferation and the increased expression of PST and NCAM.  相似文献   
2.
Partial duplication of 11q is related to several malformations like growth retardation, intellectual disability, hypoplasia of corpus callosum, short nose, palate defects, cardiac, urinary tract abnormalities and neural tube defects. We have studied the clinical and molecular characteristics of a patient with severe intellectual disabilities, dysmorphic features, congenital inguinal hernia and congenital cerebral malformation which is referred to as cytogenetic exploration. We have used FISH and array CGH analysis for a better understanding of the double chromosomic aberration involving a 7p microdeletion along with a partial duplication of 11q due to adjacent segregation of a paternal reciprocal translocation t(7;11)(p22;q21) revealed after banding analysis. The patient's karyotype formula was: 46,XY,der(7)t(7;11)(p22;q21)pat. FISH study confirmed these rearrangement and array CGH technique showed precisely the loss of at least 140 Kb on chromosome7p22.3pter and 33.4 Mb on chromosome11q22.1q25. Dysmorphic features, severe intellectual disability and brain malformations could result from the 11q22.1q25 trisomy. Our study provides an additional case for better understanding and delineating the partial duplication 11q.  相似文献   
3.
The in ovo electroporation technique in chicken embryos has enabled investigators to uncover the functions of numerous developmental genes. In this technique, the ubiquitous promoter, CAGGS (CMV base), has often been used for overexpression experiments. However, if a given gene plays a role in multiple steps of development and if overexpression of this gene causes fatal consequences at the time of electroporation, its roles in later steps of development would be overlooked. Thus, a technique with which expression of an electroporated DNA can be controlled in a stage-specific manner needs to be formulated. Here we show for the first time that the tetracycline-controlled expression method, "tet-on" and "tet-off", works efficiently to regulate gene expression in electroporated chicken embryos. We demonstrate that the onset or termination of expression of an electroporated DNA can be precisely controlled by timing the administration of tetracycline into an egg. Furthermore, with this technique we have revealed previously unknown roles of RhoA, cMeso-1 and Pax2 in early somitogenesis. In particular, cMeso-1 appears to be involved in cell condensation of a newly forming somite by regulating Pax2 and NCAM expression. Thus, the novel molecular technique in chickens proposed in this study provides a useful tool to investigate stage-specific roles of developmental genes.  相似文献   
4.
Guanine nucleotide exchange factors (GEFs) are essential for small G proteins to activate their downstream signaling pathways, which are involved in morphogenesis, cell adhesion, and migration. Mutants of Gef26, a PDZ-GEF (PDZ domain-containing guanine nucleotide exchange factor) in Drosophila, exhibit strong defects in wings, eyes, and the reproductive and nervous systems. However, the precise roles of Gef26 in development remain unclear. In the present study, we analyzed the role of Gef26 in synaptic development and function. We identified significant decreases in bouton number and branch length at larval neuromuscular junctions (NMJs) in Gef26 mutants, and these defects were fully rescued by restoring Gef26 expression, indicating that Gef26 plays an important role in NMJ morphogenesis. In addition to the observed defects in NMJ morphology, electrophysiological analyses revealed functional defects at NMJs, and locomotor deficiency appeared in Gef26 mutant larvae. Furthermore, Gef26 regulated NMJ morphogenesis by regulating the level of synaptic Fasciclin II (FasII), a well-studied cell adhesion molecule that functions in NMJ development and remodeling. Finally, our data demonstrate that Gef26-specific small G protein Rap1 worked downstream of Gef26 to regulate the level of FasII at NMJs, possibly through a βPS integrin-mediated signaling pathway. Taken together, our findings define a novel role of Gef26 in regulating NMJ development and function.  相似文献   
5.
2-N-Pentyl-4-pentynoic acid [pentyl-4-yn-valproic acid (VPA)] is an analogue of valproic acid that induces neuritogenesis and increases neural cell adhesion molecule (NCAM) prevalence in cultured neural cells. As memory consolidation involves synapse growth, aided by cell adhesion molecule function, we determined whether or not pentyl-4-yn-VPA had cognition-enhancing properties. Pentyl-4-yn-VPA (16-85 mg/kg) significantly improved water maze learning and task retention when given prior to each training session. Acute administration of pentyl-4-yn-VPA also influenced memory consolidation processes as, when given at 3 h post-passive avoidance training, the amnesia induced by scopolamine given 6 h post-training was prevented in a dose-dependent manner. Chronic administration of pentyl-4-yn-VPA (16.8 or 50.4 mg/kg) also significantly reduced escape latencies in the water maze task, 24 h following the last drug administration. This improved spatial learning was accompanied by enhanced neuroplasticity as the expression of NCAM polysialylated neurons in the infragranular zone of the dentate gyrus and in layer II of the perirhinal and piriform cortex was increased significantly following chronic drug treatment. The cognition-enhancing qualities of pentyl-4-yn-VPA, combined with its ability to attenuate the age-related loss of the NCAM polysialylation state, suggest that it may effectively slow the onset of cognitive decline.  相似文献   
6.
There is a molecular mimicry between the polysialic acid polysaccharide of bacterial pathogens causing sepsis and meningitis, and the carbohydrate units of the neural cell adhesion molecule NCAM. We investigated whether bacteriophage mutants with catalytically disabled endosialidase, which bind but do not cleave polysialic acid, could recognise and bind to bacterial and eukaryotic polysialic acid. In nitrocellulose dot blot assay the mutant bacteriophages, but not the wild-type phages, remained specifically bound to polysialic acid–containing bacteria including Escherichia coli K1 and K92, group B meningococci, Mannheimia (Pasteurella) haemolytica A2, and Moraxella nonliquefaciens. A minimum binding requirement was determined to be 10 sialyl residues in the polysialic acid chain. In Western blots the mutant phages specifically bound to the embryonic polysialylated form of NCAM, but not to the adult less sialylated form of the molecule. The mutant phages together with secondary anti-phage antibodies were subsequently successfully used in fluorescence microscopy of cultured cells and light microscopy of paraffin-embedded tissue sections as a probe for the eukaryotic polysialic acid. Thus, mutant bacteriophages of meningitis causing bacteria bind to and detect the molecularly mimicked polysialic acid of the neural cell adhesion molecule in host tissues.  相似文献   
7.
The functions of the extracellular domains of neural cell adhesion molecule (NCAM) have been studied extensively, whereas the roles of the cytoplasmic domains of the transmembrane forms of NCAM are less elucidated. We investigated the importance of the cytoplasmic domain of the 140-kDa NCAM isoform (cytNCAM-140) and of the 180-kDa NCAM isoform (cytNCAM-180) in NCAM-induced neurite extension by estimating NCAM-dependent neurite outgrowth from PC12-E2 cells grown in coculture with NCAM-negative or NCAM-positive fibroblasts. PC12-E2 cells were transiently transfected with expression plasmids encoding cytNCAM-140, cytNCAM-180, the constitutively active form of the mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase kinase (MEK2), and the enhanced variant of the green fluorescent protein (EGFP). EGFP expression was used for identification of transfected cells. We found that expression of cytNCAM-180 had no effect on NCAM-stimulated neuritogenesis, whereas expression of cytNCAM-140 strongly inhibited this process. However, if MEK2 was expressed concomitantly with cytNCAM-140, neurite outgrowth was rescued, indicating that cytNCAM-140 is involved in signaling via the Ras-MAP kinase pathway. PC12-E2 cells were subsequently transiently transfected with constructs encoding a series of fragments of cytNCAM-140 and various full-length cytNCAM-140 mutants, and the residues Thr-Glu-Val-Lys-Thr (839-843) were identified as essential in NCAM-stimulated neuritogenesis. The combined substitution of Glu(840) and Lys(842) with Ala abrogated the effect of the construct, assigning a critical role to these two residues.  相似文献   
8.
Although processes leading up to the point of synapse formation are fairly well understood, the precise sequence of events in which the membranes of two separate cells “lock in” to form a mature synaptic junctional complex is poorly understood. A careful study of the molecules operating at the synapse indicates that their roles are more multifarious than once imagined. In this review we posit that the synapse is a functional organelle with poorly defined boundaries and a complex biochemistry. The role of adhesion molecules, including the integration of their signaling and adhesive properties in the context of synaptic activity is discussed. Special issue dedicated to Anthony Campagnoni  相似文献   
9.
Among the first reported functions of 14-3-3 proteins was the regulation of tyrosine hydroxylase (TH) activity suggesting a possible involvement of 14-3-3 proteins in Parkinson's disease. Since then the relevance of 14-3-3 proteins in the pathogenesis of chronic as well as acute neurodegenerative diseases, including Alzheimer's disease, polyglutamine diseases, amyotrophic lateral sclerosis and stroke has been recognized. The reported function of 14-3-3 proteins in this context are as diverse as the mechanism involved in neurodegeneration, reaching from basal cellular processes like apoptosis, over involvement in features common to many neurodegenerative diseases, like protein stabilization and aggregation, to very specific processes responsible for the selective vulnerability of cellular populations in single neurodegenerative diseases.Here, we review what is currently known of the function of 14-3-3 proteins in nervous tissue focussing on the properties of 14-3-3 proteins important in neurodegenerative disease pathogenesis.  相似文献   
10.
Polysialic acid facilitates tumor invasion by glioma cells   总被引:2,自引:0,他引:2  
Polysialic acid (PSA) is thought to attenuate neural cell adhesion molecule (NCAM) adhesion, thereby facilitating neural cell migration and regeneration. Although the expression of PSA has been shown to correlate with the progression of certain tumors such as small cell lung carcinoma, there have been no studies to determine the roles of PSA in gliomas, the most common type of primary brain tumor in humans. In this study, we first revealed that among patients with glioma, PSA was detected more frequently in diffuse astrocytoma cells, which spread extensively. To determine directly the role of PSA in glioma cell invasion, we transfected C6 glioma cells with polysialyltransferases to express PSA. In those transfected cells, PSA is attached mainly to NCAM-140, whereas the mock-transfected C6 cells express equivalent amounts of PSA-free NCAM-140. Both PSA negative and positive C6 cell lines exhibited almost identical growth rates measured in vitro. However, PSA positive C6 cells exhibited increased invasion to the corpus callosum, where the mock-transfected C6 glioma cells rarely invaded when inoculated into the brain. By contrast, the invasion to the corpus callosum by both the mock-transfected and PSA positive C6 cells was observed in NCAM-deficient mice. These results combined indicate that PSA facilitates tumor invasion of glioma in the brain, and that NCAM-NCAM interaction is likely attenuated in the PSA-mediated tumor invasion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号