首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   9篇
  2008年   6篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1992年   1篇
排序方式: 共有66条查询结果,搜索用时 31 毫秒
1.
NAO is a natural water soluble antioxidant that was isolated and purified from spinach leaves. Using HPLC, NMR, and CMR spectroscopy, the main components were identified as flavonoids and p-coumaric acid derivatives. The NAO was found to be a very effective antioxidant in several in vivo and in vitro biological systems. In the present study, the antioxidant activity of the novel antioxidant glucurinated flavonoid (GF) isolated and characterized from NAO, is compared to well-known antioxidants. In addition, the direct free radical scavenging properties of the purified component GF were studied using the electron spin resonance (ESR) technique. GF and NAO were found to be superior to EGCG and NAC and to the Vitamin E homologue Trolox in inhibiting reactive oxygen species (ROS) formation in the autooxidation system of linoleic acid and in fibroblasts exposed to metal oxidation. GF and NAO were found to inhibit the ESR signal intensity of DMPO-O(2) radical formation during the riboflavin photodynamic reaction. 10 mM GF caused approximately 90% inhibition in the intensity of the ESR signal, while NAO at a concentration of 60 microg/ml caused an inhibition of about 50%. Using the Fenton reaction, GF and NAO were found to inhibit DMPO-OH radical formation. A concentration of 2 mM GF caused a 70% inhibition in the intensity of the DMPO-OH radical ESR signal, while propyl gallate at the same concentration caused only 50% inhibition. Furthermore, both GF and NAO also inhibited the (1)O(2) dependent TEMPO radical generated in the photoradiation TPPS4 system. About 80% inhibition was obtained by 4 mM GF. The results obtained indicate that the natural antioxidants derived from spinach may directly affect the scavenging of ROS and, as a consequence, may be considered as effective sources for combating oxidative damage.  相似文献   
2.
ABSTRACT Dynamics of herbivore populations can be influenced both by density-dependent processes and climate. We used age-at-harvest data for adult female white-tailed deer (Odocoileus virginianus) collected over 23 years to estimate survival and reproduction by age class and to identify effects of environmental factors. The study population was located on Anticosti Island (QC, Canada), at the northern limit of the species' range; the population was at high density, and the landscape had scarce forage and abundant snow during winter. Despite severe environmental conditions, population growth apparently increased during the study; adult survival was similar to other populations, although reproduction appeared lower. Winter severity was not related to survival, but density affected adult female survival. Density at estrus was the main factor influencing reproduction of 2- and 3–4-year-olds and also affected reproduction of prime-aged females (5–9-yr-olds), but not of older females. Reproductive rate of younger females was influenced by environmental conditions in autumn, such as high density or snow conditions that limited forage availability. Reproductive success of 5–9- and ≥10-year-old females appeared dependent on spring conditions favoring high-quality forage, probably through effects on neonatal survival. Relative to other studies on northern ungulates, demographic processes in our study appeared to be more affected by autumn and spring climate, in addition to population density, than by winter climate. We thus propose that population density, as well as autumn and spring climate, should be considered in management strategies. Harvest data offered a unique opportunity to study forest ungulates, for which individual monitoring is rarely possible.  相似文献   
3.
Despite great interest in sexual selection, relatively little is known in detail about the genetic and environmental determinants of secondary sexual characters in natural populations. Such information is important for determining the way in which populations may respond to sexual selection. We report analyses of genetic and large-scale environmental components of phenotypic variation of two secondary sexual plumage characters (forehead and wing patch size) in the collared flycatcher Ficedula albicollis over a 22-year period. We found significant heritability for both characters but little genetic covariance between the two. We found a positive association between forehead patch size and a large-scale climatic index, the North Atlantic Oscillation (NAO) index, but not for wing patch. This pattern was observed in both cross-sectional and longitudinal data suggesting that the population response to NAO index can be explained as the result of phenotypic plasticity. Heritability of forehead patch size for old males, calculated under favorable conditions (NAO index > or = median), was greater than that under unfavorable conditions (NAO index < median). These changes occurred because there were opposing changes in additive genetic variance (VA) and residual variance (VR) under favorable and unfavorable conditions, with VA increasing and VR decreasing in good environments. However, no such effect was detected for young birds, or for wing patch size in either age class. In addition to these environmental effects on both phenotypic and genetic variances, we found evidence for a significant decrease of forehead patch size over time in older birds. This change appears to be caused by a change in the sign of viability selection on forehead patch size, which is associated with a decline in the breeding value of multiple breeders. Our data thus reveal complex patterns of environmental influence on the expression of secondary sexual characters, which may have important implications for understanding selection and evolution of these characters.  相似文献   
4.
Animal responses to global climate variation might be spatially inconsistent. This may arise from spatial variation in factors limiting populations' growth or from differences in the links between global climate patterns and ecologically relevant local climate variation. For example, the North Atlantic Oscillation (NAO) has a spatially consistent relation to temperature, but inconsistent spatial relation to snow depth in Scandinavia. Furthermore, there are multiple mechanistic ways by which climate may limit animal populations, involving both direct effects through thermoregulation and indirect pathways through trophic interactions. It is conceptually appealing to directly model the predicted mechanistic links. This includes the use of climate variables mimicking such interactions, for example, to use growing degree days (GDD) as a proxy for plant growth rather than average monthly temperature. Using a unique database of autumn body mass of 83331 domestic lambs from the period 1992–2007 in four alpine ranges in Norway, we demonstrate the utility of hierarchical, mechanistic path models fitted using a Bayesian approach to analyse explicitly predicted relationships among environmental variables and between lamb body mass and the environmental variables. We found large spatial variation in strength of responses of autumn lamb body mass to the NAO, to a proxy for plant growth in spring (the Normalized Difference Vegetation Index, NDVI) and effects even differed in direction to local summer climate. Average local temperature outperformed GDD as a predictor of the NDVI, whereas the NAO index in two areas outperformed local weather variables as a predictor of lamb body mass, despite the weaker mechanistic link. Our study highlights that spatial variation in strength of herbivore responses may arise from several processes. Furthermore, mechanistically more appealing measures do not always increase predictive power due to scale of measurement and since global measures may provide more relevant “weather packages” for larger scales.  相似文献   
5.
Breeding at the right time is essential for animals in seasonal climates in order to ensure that the energy demands of reproduction, particularly the nutritional requirements of growing young, coincide with peak food availability. Global climate change is likely to cause shifts in the timing of peak food availability, and in order to adapt successfully to current and future climate change, animals need to be able to adjust the time at which they initiate breeding. Many animals use environmental cues available before the breeding season to predict the seasonal peak in food availability and adjust their phenology accordingly. We tested the hypothesis that regulation of breeding onset should reflect the scale at which organisms perceive their environment by comparing phenology of three seabird species at a North Sea colony. As predicted, the phenology of two dispersive species, black-legged kittiwake ( Rissa tridactyla ) and common guillemot ( Uria aalge ), correlated with a large-scale environmental cue (the North Atlantic Oscillation), whereas a resident species, European shag ( Phalacrocorax aristotelis ), was more affected by local conditions (sea surface temperature) around the colony. Annual mean breeding success was lower in late years for European shags, but not for the other two species. Since correlations among climate patterns at different scales are likely to change in the future, these findings have important implications for how migratory animals can respond to future climate change.  相似文献   
6.
Water temperature, salinity and precipitation, micronutrients (N, P, Si) and chlorophyll a concentrations in the Sylt-R?m? tidal basin (German Bight) deviated between the early 1990s, with mild winters, and the years 1996–1997 with a severe winter and a moderate winter. As a consequence of low temperature, offshore winds and low precipitation in the severe winter 1995/96, salinity peaked in February 1996 and nitrate concentrations were low. The latter further decreased in March as chlorophyll a peaked with an exceptional bloom of the diatom Odontella aurita, probably triggered by low water temperature. Winter temperatures and spring chlorophyll a in the Sylt-R?m? tidal basin correlate well with the climatic North Atlantic Oscillation index. Received in revised form: 7 May 2001 Electronic Publication  相似文献   
7.
A conceptual model of climate-related effects on lake ecosystems   总被引:7,自引:7,他引:0  
Climatic variation and change affect the dynamics of organisms and ecosystem processes. Many studies in the past have analyzed and discussed various climate-driven effects on different components of the lake ecosystem. Only a few synthesis papers have been published in this field. In this overview, a conceptual model has been developed to help explain why lakes respond individually to climate. The model consists of two main components, a so-called Landscape Filter comprising the features of geographical position, catchment characteristics and lake morphology, and a so-called Internal Lake Filter, comprising the features of lake history and biotic/abiotic interactions. The application of this conceptual model on published literature findings illustrates the strength in this encompassing perspective. An assessment of current climate research methods is presented with some perspectives given.  相似文献   
8.
We studied the formation of dissolved silicon loads from rivers to lakes, the development of diatoms in lakes and the role of climatic forcing on the silicon cycle in three river-lake systems in Sweden, Estonia and Northern Germany. We found coherent seasonality in the silicon loads of the two northern rivers, which was probably caused by the common snow-type hydrology of the catchments as distinct from the rain-type hydrology of the catchment, further south. The similarity among lakes in the dynamics of the Si-related variables studied resulted from similarities in mean lake depth and mixing type rather than the climatic regime. Among the variables measured at the three sites, river water discharge responded most coherently to climatic forcing as synchronized by the North Atlantic Oscillation winter index (NAOw). Water discharge and Si load were strongly linked variables and showed coherent patterns among the river systems. We found significant season-specific correlations of the NAOw with either the biomass or the share of diatoms in each lake, but no coherent pattern among the lakes. Our results indicate that processes driven by water discharge are more coherent across regions than in-lake processes.  相似文献   
9.
The dye 10-N-nonyl acridine orange (NAO) is used to label cardiolipin domains in mitochondria and bacteria. The present work represents the first study on the binding of NAO with archaebacterial lipid membranes. By combining absorption and fluorescence spectroscopy with fluorescence microscopy studies, we investigated the interaction of the dye with (a) authentic standards of archaebacterial cardiolipins, phospholipids and sulfoglycolipids; (b) isolated membranes; (c) living cells of a square-shaped extremely halophilic archaeon. Absorption and fluorescence spectroscopy data indicate that the interaction of NAO with archaebacterial cardiolipin analogues is similar to that occurring with diacidic phospholipids and sulfoglycolipids, suggesting as molecular determinants for NAO binding to archaebacterial lipids the presence of two acidic residues or a combination of acidic and carbohydrate residues. In agreement with absorption spectroscopy data, fluorescence data indicate that NAO fluorescence in archaeal membranes cannot be exclusively attributed to bisphosphatidylglycerol and, therefore, different from mitochondria and bacteria, the dye cannot be used as a cardiolipin specific probe in archaeal microorganisms.  相似文献   
10.
D. Straile 《Oecologia》2000,122(1):44-50
The timing of various plankton successional events in Lake Constance was tightly coupled to a large-scale meteorological phenomenon, the North Atlantic Oscillation (NAO). A causal chain of meteorological, hydrological, and ecological processes connected the NAO as well as winter and early spring meteorological conditions to planktonic events in summer leading to a remarkable memory of climatic effects lasting over almost half a year. The response of Daphnia to meteorological forcing was most probably a direct effect of altered water temperatures on daphnid growth and was not mediated by changes in phytoplankton concentrations. High spring water temperatures during ”high-NAO years” enabled high population growth rates, resulting in a high daphnid biomass as early as May. Hence, a critical Daphnia biomass to suppress phytoplankton was reached earlier in high-NAO years yielding an early and longer-lasting clear-water phase. Finally, an earlier summer decline of Daphnia produced in a negative relationship between Daphnia biomass in July and the NAO. Meteorological forcing of the seasonal plankton dynamics in Lake Constance included simple temporal shifts of processes and successional events, but also complex changes in the relative importance of different mechanisms. Since Daphnia plays an important role in plankton succession, a thorough understanding of the regulation of its population dynamics provides the key for predictions of the response of freshwater planktonic food webs to global climate change. Received: 15 February 1999 / Accepted: 23 August 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号