首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1196篇
  免费   45篇
  国内免费   32篇
  2023年   10篇
  2022年   15篇
  2021年   22篇
  2020年   13篇
  2019年   25篇
  2018年   39篇
  2017年   21篇
  2016年   41篇
  2015年   59篇
  2014年   109篇
  2013年   123篇
  2012年   58篇
  2011年   72篇
  2010年   69篇
  2009年   71篇
  2008年   58篇
  2007年   62篇
  2006年   46篇
  2005年   53篇
  2004年   40篇
  2003年   36篇
  2002年   26篇
  2001年   18篇
  2000年   10篇
  1999年   13篇
  1998年   15篇
  1997年   11篇
  1996年   5篇
  1995年   11篇
  1994年   11篇
  1993年   6篇
  1992年   4篇
  1991年   9篇
  1990年   6篇
  1989年   7篇
  1988年   12篇
  1987年   4篇
  1986年   5篇
  1985年   10篇
  1984年   13篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有1273条查询结果,搜索用时 31 毫秒
1.
Three varieties of Arachis hypogeae, GG 11, GG 20 and GG 24, were compared for resistance against A. niger. GG 20 showed the least disease severity. Infection with A. niger resulted in a rapid increase in NADPH oxidase, Glutathione reductase (GR) and salicylic acid in all the three varieties, indicating hyper increase of reactive oxygen species (ROS) and activation of phenyl propanoid pathway. Ferric reducing antioxidant power value was found to be decreasing due to infection in all the three varieties, confirming the role of ROS in pathogenesis. Since A. niger was found to cause pathogenesis by oxidative stress, the treatment of zinc was given as an antioxidant and its effect was studied. The application of zinc inhibited NADPH oxidase and GR activity in the control as well as in the infected GG 11 and GG 24 varieties but induced in the tolerant variety GG 20. Because zinc treatment could control the ROS in GG 11 and GG 24 varieties, disease severity was reduced but in GG 20 variety, zinc treatment aggravated ROS levels and also the disease severity. The protein profile of GG 20 in comparison to GG 11 and GG 24 varieties revealed one oligomeric protein of 110 kD as one of the responsible factors for its resistance. Total oil and its iodine value were found little higher in GG 20 variety than in other two varieties. It was found that the control of ROS could control the A. niger infection in Arachis hypogeae.  相似文献   
2.
《Developmental cell》2022,57(5):610-623.e8
  1. Download : Download high-res image (131KB)
  2. Download : Download full-size image
  相似文献   
3.
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related to the understanding of the role of Nox enzymes in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-β. The nature of the upstream modulators of Nox enzymes as well as the downstream targets of the Nox NADPH oxidases implicated in the propagation of the redox processes that alter renal biology in diabetes will be highlighted.  相似文献   
4.
Potassium iodate (KIO3) and potassium iodide (KI) are the major salt iodization agents used worldwide. Unlike iodide (I), iodate (IO3) should be reduced to I before it can be effectively used by the thyroid. In this study, we developed a new method for analyzing IO3 and I in tissue homogenates using high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC–ICP-MS). We further applied the method to demonstrate the KIO3 reduction process by tissues in vitro. The effects of KIO3 on the total antioxidative activity (TAA) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) were also investigated here. Finally, we found that IO3 can be reduced to I by tissue homogenates and IO3 irreversibly decreases the antioxidant capability of tissues. Our studies suggest that KIO3 might have a big effect on the redox balance of tissue and would further result in oxidative stress of organisms.  相似文献   
5.
Nox4-derived ROS is increased in response to hyperglycemia and is required for IGF-I-stimulated Src activation. This study was undertaken to determine the mechanism by which Nox4 mediates sustained Src activation. IGF-I stimulated sustained Src activation, which occurred primarily on the SHPS-1 scaffold protein. In vitro oxidation experiments indicated that Nox4-derived ROS was able to oxidize Src when they are in close proximity, and Src oxidation leads to its activation. Therefore we hypothesized that Nox4 recruitment to the plasma membrane scaffold SHPS-1 allowed localized ROS generation to mediate sustained Src oxidation and activation. To determine the mechanism of Nox4 recruitment, we analyzed the role of Grb2, a component of the SHPS-1 signaling complex. We determined that Nox4 Tyr-491 was phosphorylated after IGF-I stimulation and was responsible for Nox4 binding to the SH2 domain of Grb2. Overexpression of a Nox4 mutant, Y491F, prevented Nox4/Grb2 association. Importantly, it also prevented Nox4 recruitment to SHPS-1. The role of Grb2 was confirmed using a Pyk2 Y881F mutant, which blocked Grb2 recruitment to SHPS-1. Cells expressing this mutant had impaired Nox4 recruitment to SHPS-1. IGF-I-stimulated downstream signaling and biological actions were also significantly impaired in Nox4 Y491F-overexpressing cells. Disruption of Nox4 recruitment to SHPS-1 in aorta from diabetic mice inhibited IGF-I-stimulated Src oxidation and activation as well as cell proliferation. These findings provide insight into the mechanism by which localized Nox4-derived ROS regulates the sustained activity of a tyrosine kinase that is critical for mediating signal transduction and biological actions.  相似文献   
6.
Summary Previous studies examining the regulation of the synthesis of G6PDH and 6PGDH in rat liver and adipose tissue have focused on the induction of these enzymes by different diets and some hormones. In rat liver these enzymatic activities seem to be regulated by a mechanism involving changes in the NADPH requirements. In this paper we have studied the effect of changes in the flux through different NADPH-consuming pathways on G6PDH and 6PGDH levels in adipose tissue and on the NADPH/NADP ratio. The results show that: I) an increase in the consumption of NADPH, caused by the activation of either fatty acid synthesis or detoxification systems which consume NADPH, is paralleled by an increase in the levels of these enzymes; II) when the increase in consumption of NADPH is prevented, the G6PDH and 6PGDH levels do not change.Abbreviations G6PDH Glucose-6-Phosphate Dehydrogenase - 6PGDH 6-Phosphogluconate Dehydrogenase - GR Glutathione Reductase - ME Malic Enzyme - tBHP t-Butyl Hydroperoxide - NF Nitrofurantoin - CumOOH Cumene Hydroperoxide  相似文献   
7.
A Chinese hamster ovary triple auxotroph (CHO AUXB1) requires glycine, adenosine, and thymidine (GAT) for growth and survival due to a defect in the structural gene for folylpolyglutamate synthetase (FPGS). This auxotroph and others like it contain less than 3% of the parental amounts of FPGS activity. In order to develop a reverse mutation assay with CHO AUXB1, we determined the optimal conditions for measuring reversion and characterized some of the revertants. We also obtained quantitative mutagenicity data for several direct-acting mutagens for comparison to the parental CHO-S/HGPRT locus. Induced revertants appear in the culture immediately following 20-22 h exposures in +GAT complete medium, indicative of dominant genetic changes. They are maximally expressed after 2 population doublings and can be conveniently selected after 44-48 h of expression growth by plating 1 X 10(6) cells/100-mm dish into -GAT-deficient medium and incubating 12-13 days. Plating reconstruction experiments show that the cloning efficiencies of revertants in -GAT medium are not influenced by the presence of up to 1 X 10(6) CHO AUXB1 cells. Dose-dependent increases above the spontaneous revertant frequency (average = 5 X 10(7)) are induced with cis-Pt(NH3)2Cl2 (14-fold) (but not trans-Pt(NH3)2Cl2), PtCl4(10-fold), Pt(SO4)2 (14-fold), K2CrO4 (8-fold), EMS (10-fold), 4-NQO (53-fold), ICR-191 (60-fold), and ICR-170 (30-fold). All of the revertants that have been isolated are stable to repeated subculturing in -GAT medium; 40 out of 42 that have been analyzed are characterized by an increased 72-h growth incorporation of labeled folate and their extracts contain 5-94% as much FPGS as the original, parental CHO-S line. Spontaneous and induced reversion to the GAT+ phenotype primarily reflects mutations involving the FPGS gene locus. But the re-acquisition by most of the revertants of much less than normal amounts of FPGS activity suggests that they arise from compensatory second-site mutations within this gene. Comparison of the mutagenicity patterns of the foregoing compounds as a function of the applied concentration and the relative percent survival reveals some interesting similarities, as well as differences, between the CHO AUXB1/FPGS and CHO-S/HGPRT loci. In particular, the FPGS locus is rather insensitive to EMS (or other simple alkylating agents). However, it seems to be quite susceptible to reversion by other chemicals that are known to react selectively with guanine bases in DNA. CHO AUXBI is a useful supplemental mammalian assay system for assessing quantitatively the generally weak mutagenic activities of metal compounds.  相似文献   
8.
Nitrogen regulation of nitrate uptake and nitrate reductase (EC 1.7.99.4) was studied in the cyanobacterium Anabaena cycadeae Reinke and its glutamine auxotroph. Development of the nitrate uptake system preceded, and was independent of, the development of the nitrate reductase system. The levels of both systems were several-fold higher in the glutamine auxotroph lacking glutamine synthetase (EC 6.3.1.2) than in the wild type strain having normal glutamine synthetase activity. The nitrate uptake system was found to be NH4-repressible and the nitrate reductase system NO3-inducible. NH4+ was the initial repressor signal for the uptake process which was involved in the control of the NO3inducible reductase system.  相似文献   
9.
Entamoeba histolytica. I. Aerobic metabolism   总被引:5,自引:0,他引:5  
The respiration of intact trophozoites harvested from axenic cultures of Entamoeba histolytica was studied with the polarographic technique utilizing the Clark oxygen electrode. A typical Qo2 value for the freshly harvested amebae was 1 μatom oxygen/mg protein/hr.It was conclusively demonstrated that this parasite, a putative anaerobe, not only consumes oxygen when provided, but has a high affinity for the gas.Added glucose, galactose, and ethanol increased the respiratory rates, whereas other carbohydrates were without effect on the endogenous respiration. Intermediates of the tricarboxylic acid cycle, amino and fatty acids did not stimulate the respiration of E. histolytica.Inhibitors of the mammalian respiratory chain (cyanide, antimycin) as well as agents that inhibit enzymes catalyzing the tricarboxylic acid cycle (malonate, fluoropyruvate, fluoroacetate, fluorocitrate) had little effect on the endogenous or glucose-supported respiration. Alkylating agents (iodoacetamide, iodoacetate), cinnamate, and N-ethylymaleimide strongly inhibited the oxygen consumption of E. histolytica. The chemotherapeutic agents, Paromomycin, Emetine and Metronidazole, at concentrations that inhibit growth in vitro, did not restrict the respiration.Storage of the trophozoites at 4 C led to progressive deterioraion of the parasites and loss of endogenous and glucose-supported respiration. The deterioration was paralled by loss of SH-materials from the amebae. Likewise, sonication or lysis with detergents abolished both the endogenous respiration and response to glucose.Exogenous NADH or NADPH evoked only marginal increases in oxygen consumption of the freshly harvested amebae, but were effective respiratory substrates with stored or sonicated organisms. Addition of vitamin K3 greatly enhanced the endogenous and glucose-supported respiration of the intact amebae, as well as enhancing the response of stored or sonicated amebae to reduced pyridine nucleotides.  相似文献   
10.
A highly sensitive chemiluminescent assay for NAD(P)H have been developed. The principle of the method is as follows; NAD(P)H reduces molecular oxygen to superoxide anion (O) and hydrogen peroxide (H2O2) in the presence of 1-methoxy-5-methylphenazinium methyl sulphate (1-MPMS) as electron mediator. The produced O and H2O2 can be measured by chemiluminescent reaction using isoluminol (IL) and microperoxidase (m-POD). A linear relationship between chemiluminescence intensity and NAD(P)H concentration (log/log) was obtained ranged from 10?9 mol/I to 10?5 mol/I. This chemiluminescent reaction has been coupled to the assay of glucose-6-phosphate dehydrogenase (G6PDH), β-D -galactosidase (β-Gal) and alkaline phosphatase (ALP). The detection limits of G6PDH, β-Gal and ALP were 10?18 mol, 10?20 mol and 10?18 mol per assay, respectively. The chemiluminescent assay of these enzymes applied to chemiluminescent enzyme immunoassay for 17α-hydroxy-progesterone and DNA hybridization assay using these enzymes as label.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号