首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   2篇
排序方式: 共有8条查询结果,搜索用时 62 毫秒
1
1.
The chemical carcinogen N-acetoxy-2-acetylaminofluorene (NA-AAF) was reacted with poly(dG-dC) - poly(dG-dC); poly dG - poly dC; poly(dA-dT) - poly (dA-dT); and poly dA - poly dT under a variety of conditions. Poly (dG-homo GC polymer and 10--20 more reactive the A + T polymers. Lowering the ionic strength increased the extent of reaction, while pH change (8.9 vs. 5.5) had only a small effect. If ionic strength was adjusted so that the two guanine-containing polymers showed equal thermal stability (as judged by Tm) then the alternating copolymer was 7 times as reactive as the homopolymer. In aggreement with previous investigators, the major product was found to be 8-(N-2-fluorenylacetamido) deoxyguanosine.  相似文献   
2.
Induction of 6-thioguanine resistance was studied in human cells treated with the direct-acting chemical carcinogen N-acetoxy-2-acetylaminofluorene (NA-AAF). At low concentrations (2.5–7.5 μM) induction of resistant clones was linear and followed one-hit kinetics, while at 10 μM the yield of resistant clones was higher and appeared to result from the combination of one-hit and two-hit kinetics. A study of about 50 resistant clones revealed that most had reduced levels of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity (25–85% of controls) and were able to use exogenous hypoxanthine for growth (“Type II mutants,” deMars, 1974); a few had very low HGPRT activity (1–8% of controls) and were unable to use exogenous hypoxanthine (“Type I mutants”). Use of [914-C]NA-AAF allowed us to examine the frequency of induction of thioguanine resistance as a function of binding to DNA (μmole AAF/mole DNA-P). Calculations from these data suggest that most “hits” on the HGPRT locus do not result in detectable mutations: At three different levels of binding and induced mutation frequency, the yield was 2.5–3 detectable mutants/10 000 molecules of acetylaminofluorene bound to the HGPRT locus. These data suggest that most bound acetylaminofluorene molecules either produce no change in the primary sequence of DNA (possibly as a result of repair or correct “read through” by the DNA polymerase) or result in changes which are phenotypically undetectable.  相似文献   
3.
Factors influencing the frequency of thioguanine resistant mutations were examined in Chinese hamster lung cells damaged with a carcinogen, N-acetoxy-2-acetyl aminofluorene. Factors such as inoculum density, expression time, and concentration of selective agent were found to have a profound effect on the mutation frequency.Over a range of doses, a longer expression time is required for mutant cells from a more damaged population to reach their maximum frequency. In order to investigate the elements involved in this phenomenon, the increment in the plating efficiency of treated cells as a function of expression time, spontaneous mutation rate per cell per generation, viability of mutant as well as wild type cells, and half life of HGPRTase were evaluated.There was an observed relationship between induced mutation frequency and plating efficiency of treated cells. When treated cells had recovered from effects of the treatment and arrived at the normal level of plating efficiency, they also yielded the maximum frequency of mutations.The estimated mutation rate was 5.5 × 10?8 per cell per generation. This number is too small to account for the increment in mutation frequency with the increase in the expression time. The mutation frequency of spontaneous origin was 4 × 10?6 and that of induction of 10?5 M NA-AAF was 10?4. Lower growth rates of mutant cells cannot explain this increase in the number of mutants recovered, either.Continuous diminution in the level of HGPRTase, at 35% daily, interpreted as an important factor responsible for the recovery of mutation frequency during expression time, was observed in non-dividing cells. None of a large number of mutants sampled from those isolated had HGRPT activity. This indicates that they are true mutants and are not a result of phenocopy. Only cells completely deficient in HGPRT activity are recovered in TG selection medium. It is suggested, therefore, that this cell line is suitable for mutagenicity testing in the induction of mutation at the HGPRT locus.  相似文献   
4.
Chemical induction of 6-thioguanine resistance was studied in synchronized human fibroblast cells. Cells initially grown in a medium lacking arginine and glutamine for 24 h ceased DNA synthesis and failed to enter the S phase. After introduction of complete medium, the cells progressed to the S phase after 16 h. DNA synthesis peaked 20 h after removal of nutrient stress and declined.Mutations were induced in S-phase cells by methyl methanesulfonate (MMS), N-acetoxy-2-acetylaminofluorene (NA-AAF) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Chemical treatments resulted in an increase in the absolute number of mutant colonies and in a dose-dependent mutation frequency. In this report, we show that NA-AAF evokes a temporal pattern of mutation in synchronized cells, with such mutations being induced only during the S phase. Evidence indicates that presence of S-phase cells in the treated cultures is a prerequisite for the induction of mutations.  相似文献   
5.
Induction of 6-thioguanine resistance was studied in human cells treated with the direct-acting chemical carcinogen N-acetoxy-2-acetylaminofluorene (NA-AAF). At low concentrations (2.5–7.5 μM) induction of resistant clones was linear and followed one-hit kinetics, while at 10 μM the yield of resistant clones was higher and appeared to result from the combination of one-hit and two-hit kinetics. A study of about 50 resistant clones revealed that most had reduced levels of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity (25–85% of controls) and were able to use exogenous hypoxanthine for growth (“Type II mutants,” deMars, 1974); a few had very low HGPRT activity (1–8% of controls) and were unable to use exogenous hypoxanthine (“Type I mutants”). Use of [9-14C]NA-AAF allowed us to examine the frequency of induction of thioguanine resistance as a function of binding to DNA (μmole AAF/mole DNA-P). Calculations from these data suggest that most “hits” on the HGPRT locus do not result in detectable mutations: At three different levels of binding and induced mutation frequency, the yield was 2.5-3 detectable mutants/10 000 molecules of acetylaminofluorene bound to the HGPRT locus. These data suggest that most bound acetylaminofluorene molecules either produce no change in the primary sequence of DNA (possibly as a result of repair or correct “read through” by the DNA polymerase) or result in changes which are phenotypically undetectable.  相似文献   
6.
Factory workers exposed to ethylene oxide (EO), 0.5–1.0 ppm in factory air, together with matched controls from the same factory, were examined for evidence of toxic exposure by measurement of unscheduled DNA synthesis (UDS) induced by N-acetoxy-2-acetylaminofluorene (NA-AAF) and of chromosome aberrations in peripheral lymphocytes.The total chromatid gaps plus breaks were significantly elevated and NA-AAF-induced UDS was significantly reduced in the EO-exposed group as compared with the unexposed control group. The NA-AAF-induced UDS values negatively correlated to the duration (yr) of EO exposure (r = ?0.45, p < 0.02) and the number of chromosome breaks (r = ?0.61, p < 0.05), indicating an inhibition in vivo of DNA-repair capacity by EO. These data were verified in vitro by biochemical and autoradiographic studies of EO-induced UDS in human blood cells. Above 2 mM EO, UDS was inhibited in lymphocytes whether they were cultured for 24 or 122 h after alkylation with EO. Even at the subtoxic EO dose of 0.1 mM, lymphocytes were sensitized to additional exposures of NA-AAF, so that cytotoxicity was increased to 40% compared with 5% for the controls even though UDS was unaffected.It is concluded that EO was toxic to lymphocytes, even when they were sensitized at non-toxic EO doses to the cytotoxic action of other mutagens (e.g. NA-AAF), and the cells that did survive above 2 mM EO were inhibited in their DNA-repair capacity as judged by reduced UDS.  相似文献   
7.
8.
The reassociation rates of repair replicated DNA of two human lymphoblastoid cell lines, the WIL2-A3 ‘normal’ line and the RAJI line of Burkitt's lymphoma, were examined using the DNA/DNA ‘C0t’ hybridization technique. The cells were treated with methyl methanesulfonate (MMS), an alkylating agent and mutagen, to induce the repair.The incorporated repair replication radioactivity in highly repetitive sequences of WIL2-A3 cell DNA reassociates as expected for a randomly distributed incorporation. The reassociation of repair radioactivity in sequences of fewer numbers of copies, however, is less than expected for a random distribution. It is less than that occurring for semiconservatively synthesized DNA of WIL2-A3 cells co-incubated with the repair labeled DNA as an internal control.The observed difference could be due to an over-representation of repair replication radioactivity in DNA sequences with fewer copies. It is unlikely to be due to residual alkali labile damage resulting from MMS treatment, since a similar difference was not observed when semiconservatively labeled DNA from cells which had been treated with MMS for the same time and at the same concentration as in the repair experiments was substituted for repair replicated DNA in the reassociation reactions. Other possible causes of the apparent difference in the reassociation rates observed are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号