首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2000年   1篇
  1993年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
W. Schaaf  W. Zech 《Plant and Soil》1993,152(2):277-285
Element budgets of a heavily damaged Norway spruce ecosystem at Hohe Matzen in the Fichtel Mountains/FRG were studied over 3 years. The trees show severe symptoms of decline and Mg deficiency. The soil is a typic Dystrochrept derived from granite with sandy texture, high stone content, and low base saturation. The budgets show high releases of N, S and Al from the ecosystem as a result of input, buffering and turnover processes. After an increase of proton fluxes in the organic surface layer, a strong reduction of protons in the B horizon was found. This process was accompanied by the release of Al, whereas reactive Al(OH)3 was exhausted in the A horizon. The low ANC is also shown in pH-stat.-titrations. The data indicate a strong mineralisation in the humus layer, which results in a net release of NH4, SO4 and TOC. Nitrification takes place mainly in the A horizon. With respect to the N-budget, the ecosystem is approaching the state of N saturation. The processes of N turnover lead to an internal proton production exceeding the atmospheric input, and thus contributing to soil acidification.  相似文献   
2.
The following arguments are outlined and then illustrated by the response of the Hurley Pasture Model to [CO2] doubling in the climate of southern Britain. 1. The growth of N-limited vegetation is determined by the concentration of N in the soil mineral N pools and high turnover rates of these pools (i.e., large input and output fluxes) contribute positively to growth. 2. The size and turnover rates of the soil mineral N pools are determined overwhelmingly by N cycling into all forms of organic matter (plants, animals, soil biomass and soil organic matter — `immobilisation' in a broad sense) and back again by mineralisation. Annual system N gains (by N2 fixation and atmospheric deposition) and losses (by leaching, volatilisation, nitrification and denitrification) are small by comparison. 3. Elevated [CO2] enriches the organic matter in plants and soils with C, which leads directly to increased removal of N from the soil mineral N pools into plant biomass, soil biomass and soil organic matter (SOM). ‘Immobilisation’ in the broad sense then exceeds mineralisation. This is a transient state and as long as it exists the soil mineral N pools are depleted, N gaseous and leaching losses are reduced and the ecosystem gains N. Thus, net immobilisation gradually increases the N status of the ecosystem. 4. At the same time, elevated [CO2] increases symbiotic and non-symbiotic N2 fixation. Thus, more N is gained each year as well as less lost. Effectively, the extra C fixed in elevated [CO2] is used to capture and retain more N and so the N cycle tracks the C cycle. 5. However, the amount of extra N fixed and retained by the ecosystem each year will always be small (ca. 5–10 kg N ha-1 yr-1) compared with amount of N in the immobilisation-mineralisation cycle (ca. 1000 kg N ha-1 yr-1). Consequently, the ecosystem can take decades to centuries to gear up to a new equilibrium higher-N state. 6. The extent and timescale of the depletion of the mineral N pools in elevated [CO2] depends on the N status of the system and the magnitude of the overall system N gains and losses. Small changes in the large immobilisation—mineralisation cycle have large effects on the small mineral N pools. Consequently, it is possible to obtain a variety of growth responses within 1–10 year experiments. Ironically, ecosystem models — artificial constructs — may be the best or only way of determining what is happening in the real world. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号