首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2023年   2篇
  2009年   1篇
  2003年   1篇
  1996年   1篇
  1988年   1篇
  1982年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
The community composition of epiphytic heterotrophic bacteria on leaves of beech and oak, which were either damaged by lepidopterous larvae or remained undamaged, was investigated. In addition, the ability of these bacteria to utilize inorganic nitrogen was studied. The bacteria were isolated on nutrient agar and systematically identified with biochemical and physiological tests. Rarefaction plots and the Shannon-Wiener function revealed that species diversity was significantly higher on leaves of damaged beech compared to undamaged leaves, but no differences were found on leaves of oak. The portion of bacterial isolates showing a strong response to ammonia and nitrate was significantly larger on leaves of oak than on those of beech. Furthermore, significantly more isolates with a high capability to assimilate both nitrogen compounds were found on leaves attacked by the folivorous larvae compared to those not attacked on oak. It is suggested that the changes in the microbial community in response to folivorous insects might affect the extent of nutrient cycling exceeding eventually the scale of a leaf.  相似文献   
2.
Two forest associations, cohune palm (Cohune Ridge) and mixed tropical hardwood (High Bush), were assessed on the basis of nutrient movement and storage for their suitability for agriculture. Continuous monitoring of soil nitrogen and leaf litterfall over a one-year period provided information on soil building processes in the forest fallow. Destructive cuts revealed the storage of 690 kg N ha–1 in the standing biomass of the Cohune forest versus 203 kg N ha–1 in the High Bush. Litter biomass was exceptionally high in the Cohune Ridge (497 kg ha–1 dry matter) as compared to the High Bush (65 kg ha–1 dry matter) and other tropical forests. This is probably because of a low rate of decomposition in the Cohune Ridge palm forest. A substantial reserve of nitrogen is present in both forests' fallows, and this can in part be harvested by the small farmer for crop production.
Ciclo de nitrógeno en la zona de bosque seco estacional de Belize, América Central
Resumen Dos asociaciones boscosas (Palma Cohune y Matorral Alto) se estudiaron en relación a sus reservas y flujos de nutrimentos y sus posibilidades de aprovechamiento agricola. Se siguió la evolución del nitrógeno en el suelo y en la caida de hojarasca durante un año obteniéndose asi información sobre los procesos pedogenéticos en el barbecho del bosque.A través de muestreos destructivos se encontró que en la biomasa del bosque de Palma Cohune habían 690 kg N ha–1 y en el Matorral Alto solo 203 kg N ha–1. La biomasa de hojarasca era excepcionalmente alta en Palma Cohune alcanzando un valor de 497 kg materia seca ha–1; en el bosque de Matorral Alto la hojarasca era de 65 kg materia seca ha–1. Esto probablemente se deba a la baja velocidad de descomposición en el caso de la palma.Las reservas sustanciales encontradas en ambos barbechos para el nitrógeno podrían ser parcialmente utilizadas para la producción agrícola campesina.
  相似文献   
3.
Field experiments were carried out on a temperate soil to determine the decline rate, the stabilization in soil organic matter and the plant uptake of N from 15N-labelled crop residues. The fate of N from field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) residues was followed in unplanted and planted plots and related to their chemical composition. In the top 10 cm of unplanted plots, inorganic N was immobilized after barley residue incorporation, whereas the inorganic N pool was increased during the initial 30 days after incorporation (DAI) of pea residues. Initial net mineralization of N was highly correlated to the concentrations of soluble C and N and the lignin: N ratio of residues. The contribution of residue-derived N to the inorganic N pool was at its maximum 30 DAI (10–55%) and declined to on average 5% after 3 years of decomposition.Residual organic labelled N in the top 10 cm soil declined rapidly during the initial 86 DAI for all residue types. Leaching of soluble organic materials may have contributed to this decline. At 216 DAI 72, 59 and 45% of the barley, mature pea and green pea residue N, respectively, were present in organic N-forms in the topsoil. During the 1–3 year period, residual organic labelled N from different residues declined at similar rates, mean decay constant: 0.18 yr-1. After 3 years, 45% of the barley and on average 32% of the pea residue N were present as soil organic N. The proportion of residue N remaining in the soil after 3 years of decomposition was most strongly correlated with the total and soluble N concentrations in the residue. The ratio (% inorganic N derived from residues): (% organic N derived from residues) was used as a measure of the rate residue N stabilization. From initial values of 3–7 the ratios declined to on average 1.9 and 1.6 after 2 and 3 yrs, respectively, indicating that a major part of the residue N was stabilized after 2 years of decomposition. Even though the largest proportion of residue N stabilized after 3 years was found for barley, the largest amount of residue N stabilized was found with incorporation of pea residues, since much more N was incorporated with these residues.In planted plots and after one year of decomposition, 7% of the pea and 5% of the barley residue N were recovered in perennial ryegrass (Lolium perenne L.) shoots. After 2 years the cumulative recovery of residue N in ryegrass shoots and roots was 14% for pea and 15% for barley residue N. The total uptake of non-labelled soil N after 2 years of growth was similar in the two residue treatments, but the amount of soil N taken up in each growth period varied between the treatments, apparently because the soil N immobilized during initial decomposition of residues was remineralized later in the barley than in the pea residue treatment. Balances were established for the amounts of barley and mature pea residue N remaining in the 0–10 cm soil layer and taken up in ryegrass after 2 years of decomposition. About 24% of the barley and 35% of the pea residue N were unaccounted for. Since these apparent losses are comparable to almost twice the amounts of pea and barley residue N taken up by the perennial ryegrass crop, there seems to be a potential for improved crop residue management in order to conserve nutrients in the soil-plant system.  相似文献   
4.
Invasion by Acacia longifolia alters soil characteristics and processes. The present study was conducted to determine if the changes in soil C and N pools and processes induced by A. longifolia persist after its removal, at the São Jacinto Dunes Nature Reserve (Portugal). Some areas had been invaded for a long time (>20 years) and others more recently (<10 years). For each type of invasion, (i.e., long-invaded and recently invaded), three treatments were used: (1) A. longifolia left intact; (2) A. longifolia was removed; and (3) both A. longifolia and litter layer were removed. Soil samples were collected once a year for four and half years and analysed for chemical and microbial properties. In general, microbial parameters responded faster than C and N pools. In long-invaded areas, two and half years after removal of plants and litter, basal respiration and microbial biomass had already decreased >30%, β-glucosaminidase activity (N mineralization index) >60% and potential nitrification >95%. Removal of plants and litter resulted in a >35% decrease in C and N content after four and half years. In recently invaded areas, β-glucosaminidase activity and potential nitrification showed a marked decrease (>54% and >95%, respectively) after removal of both A. longifolia and litter. Our results suggest that after removal of an N2-fixing invasive tree that changes ecosystem-level processes, it takes several years before soil nutrients and processes return to pre-invasion levels, but this legacy slowly diminish, suggesting that the susceptibility of native areas to (re)invasion is a function of the time elapsed since removal. Removal of the N-rich litter layer facilitates ecosystem recovery.  相似文献   
5.
Nitrification and denitrification rates were estimated simultaneously in soil-floodwater columns of a Crowley silt loam (Typic Albaqualfs) rice soil by an15N isotopic dilution technique. Labeled NO 3 was added to the floodwater of soil-water columns, half were treated with urea fertilizer. The (NO 3 +NO 2 )–N and (NO 3 +NO 2 )–N concentrations in the floodwater were measured over time and production and reduction rates for NO 3 calculated. Nitrate reduction in the urea amended columns averaged 515 mol N m–2h–1 and nitrification averaged 395 mol N m–2h–1 over the 35–153 d incubation. The nitrification rate for 4–19 d sampling period (1,560 mol N m–2h–1) in the urea amended columns was almost 9 times greater than the reduction rate (175 mol N m–2h–1) over the same period. Without the addition of urea the NO 3 production rate averaged 32 mol N m–2h–1 and reduction 101 mol N m–2h–1.  相似文献   
6.
The ongoing climate change is predicted to induce more weather extremes such as frequent drought and high-intensity precipitation events, causing more severe drying-rewetting cycles in soil. However, it remains largely unknown how these changes will affect soil nitrogen (N)-cycling microbes and the emissions of potent greenhouse gas nitrous oxide (N2O). Utilizing a field precipitation manipulation in a semi-arid grassland on the Loess Plateau, we examined how precipitation reduction (ca. −30%) influenced soil N2O and carbon dioxide (CO2) emissions in field, and in a complementary lab-incubation with simulated drying-rewetting cycles. Results obtained showed that precipitation reduction stimulated plant root turnover and N-cycling processes, enhancing soil N2O and CO2 emissions in field, particularly after each rainfall event. Also, high-resolution isotopic analyses revealed that field soil N2O emissions primarily originated from nitrification process. The incubation experiment further showed that in field soils under precipitation reduction, drying-rewetting stimulated N mineralization and ammonia-oxidizing bacteria in favor of genera Nitrosospira and Nitrosovibrio, increasing nitrification and N2O emissions. These findings suggest that moderate precipitation reduction, accompanied with changes in drying-rewetting cycles under future precipitation scenarios, may enhance N cycling processes and soil N2O emissions in semi-arid ecosystems, feeding positively back to the ongoing climate change.  相似文献   
7.
Miscanthus spp. show excellent application prospects due to its bioenergy potential and multiple ecological services. Annual N export with biomass harvest from Miscanthus, even without fertilizer supplement, do not reduce soil N levels. The question arises regarding how Miscanthus can maintain stable soil N levels. Metagenomic strategies were used to reveal soil N-cycling-related microbiome and their functional contributions to processes of soil N-cycling based on the comparison among the bare land, cropland, 10-year Miscanthus × giganteus, and 15-year Miscanthus sacchariflorus fields. The results showed that, after long-term cropland-to-Miscanthus conversion (LCMC), 16 of 21 bacterial phyla and all the archaeal phyla exhibited significant changes. Soil microbial denitrification and nitrification functions were significantly weakened, and N fixation (NF) was significantly enhanced. The biosynthesis of amino acids, especially alanine, aspartate, and glutamate metabolism, in soil N-cycling-related microbiome was dramatically promoted. The genus Anaeromyxobacter contributed largely to the NF process after LCMC. Variations in the soil available potassium, available N, organic C, and total N contents drove a functional shift of soil microbiome from cropland to Miscanthus pattern. We conclude that Miscanthus can recruit Anaeromyxobacter communities to enhance NF benefiting its biomass sustainability and soil N balance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号