首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  2019年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1991年   3篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1980年   2篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有28条查询结果,搜索用时 62 毫秒
1.
At muscle-tendon junctions of red and of white axial muscle fibres of carp, new sarcomeres are found adjacent to existing sarcomeres along the bundles of actin filaments that connect the myofibrils with the junctional sarcolemma. As the filament bundles that transmit force to the junction originate proximal to new sarcomeres, they probably relieve these new sarcomeres from premature loading. In red fibres, these filament bundles are long (up to 20 m) and dense, permitting light-microscopical immunohistochemistry (double reactions: anti-titin or anti--actinin and phalloidin). New sarcomeres have clear I bands; their A band lengths are similar to those of older sarcomeres and the thick filaments lie in register. T tubules are found at the distal side of new sarcomeres but terminal Z lines are absent. The late addition of -actinin suggests that -actinin mainly has a stabilizing role in sarcomere formation. The presence of titin in the terminal fibre protrusions is in agreement with its supposed role in sarcomere formation, viz. the integration of thin and thick filaments. The absence of a terminal Z line from sarcomeres with well-registered A bands suggests that this structure is not essential for the anchorage of connective (titin) filaments.  相似文献   
2.
Paclitaxel (Taxol) has been successfully combined with the monoclonal antibody trastuzumab (Herceptin) in the treatment of ErbB2 overexpressing cancers. However, this combination therapy showed an unexpected synergistic increase in cardiac dysfunction. We have studied the mechanisms of paclitaxel/anti-ErbB2 cardiotoxicity in adult rat ventricular myocytes (ARVM). Myofibrillar organization was assessed by immunofluorescence microscopy and cell viability was tested by the TUNEL-, LDH- and MTT-assay. Oxidative stress was measured by DCF-fluorescence and myocyte contractile function by video edge-detection and fura-2 fluorescence. Treatment of ARVM with paclitaxel or antibodies to ErbB2 caused a significant increase in myofilament degradation, similarly as observed with an inhibitor of MAPK-signaling, but not apoptosis, necrosis or changes in mitochondrial activity. Paclitaxel-treatment and anti-ErbB2 reduced Erk1/2 phosphorylation. Paclitaxel increased diastolic calcium, shortened relaxation time and reduced fractional shortening in combination with anti-ErbB2. A minor increase in oxidative stress by paclitaxel or anti-ErbB2 was found. We conclude, that concomitant inhibition of ErbB2 receptors and paclitaxel treatment has an additive worsening effect on adult cardiomyocytes, mainly discernible in changes of myofibrillar structure and function, but in the absence of cell death. A potential mechanism is the modulation of the MAPK/Erk1/2 signaling by both drugs.  相似文献   
3.
Recessive mutant gene c in the axolotl results in a failure of affected embryos to develop contracting hearts. This abnormality can be corrected by treating the mutant heart with RNA isolated from normal anterior endoderm or from endoderm conditioned medium. A cDNA library was constructed from the total conditioned medium RNA using a random priming technique in a pcDNAII vector. We have previously identified a clone (designated as N1) from the constructed axolotl cDNA library, which has a unique nucleotide sequence. We have also discovered that the N1 gene product is related to heart development in the Mexican axolotl [Cell Mol. Biol. Res. 41 (1995) 117]. In the present studies, we further investigate the role of N1 on heartbeating and heart development in axolotls. N1 mRNA expression has been determined by using semi-quantitative RT-PCR with specifically designed primers. Normal embryonic hearts (at stages 30-31) have been transfected with anti-sense oligonucleotides against N1 to determine if downregulation of N1 gene expression has any effect on normal heart development. Our results show that cardiac N1 mRNA expression is partially blocked in the hearts transfected with anti-sense nucleotides and the downregulation of N1 gene expression results in a decrease of heartbeating in normal embryos, although the hearts remain alive as indicated by calcium spike movement throughout the hearts. Confocal microscopy data indicate some myofibril disorganization in the hearts transfected with the anti-sense N1 oligonucleotides. Interestingly, we also find that N1 gene expression is significantly decreased in the mutant axolotl hearts. Our results suggest that N1 is a novel gene in Mexican axolotls and it probably plays an important role in myofibrillogenesis and in the initiation of heartbeating during heart development.  相似文献   
4.
Immunofluorescence studies of normal and Trypanosoma cruzi-infected primary cultures of heart muscle cells were performed to gather information about the arrangement of myofibrillar components during the intracellular life cycle of this parasite. By using a panel of monoclonal antibodies against various myofibrillar proteins, a progressive disruption and loss of contractile proteins (such myosin and actin) of the host cell was detected during infection. The host cell formed a loose network of myofibrillar proteins around the parasites. Breakdown of the myofibrils occurred in regions where the parasites were present, and heavily infected cells showed myofibrillar proteins at their periphery. In parallel, we investigated the effect of T. cruzi infection on intracellular calcium levels by using a Ca2+ fluorescent indicator (confocal microscopy). Infected cardiomyocytes displayed a marked impairment in contractility, and calcium influxes became irregular and less intense when compared with those of non-infected cells. Our results demonstrate that T. cruzi infection dramatically affects calcium fluxes and causes myofibrillar breakdown disturbing cardiomyocyte contractility.Financial support through grants and scholarships from the Brazilian funding agencies FAPESP, CNPq, and CAPES is gratefully acknowledged.  相似文献   
5.
Experiments have been carried out to explore the proteolytic cleavage of rabbit skeletal myofibrils by a calcium dependent neutral proteinase (CaANP). Polyacrylamide gel elctrophoresis on great slabs showed the ability of CaANP to degrade myofibrils more readily than supposed. Besides the hydrolysis of troponin T and the apparition of degradation product of 30,000 molecular weight, the activity of this enzyme is obvious too on some components of the M-line and on heavy subunits of tropomyosin as well as on three unidentified proteic fractions. The variety of the degradation products which appear suggest that the specificity of CaANP is not as selective as presumed. The participation of this proteinase in the postmorten evolution of muscle and its intervention in the turnover of myofibrillar proteins is discussed.  相似文献   
6.
A myofibril-bound serine protease (MBSP) was partially purified from ostrich (Struthio camelus) skeletal muscle. MBSP was dissociated from the myofibrillar fraction by ethylene glycol treatment at pH 8.5, followed by partial purification via Toyopearl Super Q 650 S and p-aminobenzamidine column chromatographies. Ostrich MBSP revealed a major protein band of approximately 21 kDa on SDS-PAGE, showing proteolytic activity after casein zymography. Optima pH and temperature of ostrich MBSP were 8 and 40 °C, respectively. Substrate specificity analysis revealed that the enzyme cleaved synthetic fluorogenic substrates at the carboxyl side of arginine residues. Kinetic parameters (Km and Vmax values) were calculated from Lineweaver–Burk plots. The kinetic characteristics of ostrich MBSP were compared to values obtained for commercial bovine trypsin in this study, as well as those obtained for MBSP from mouse and various fish species. The results suggest that ostrich MBSP is a tryptic-like serine protease. Ostrich MBSP exhibited low sequence identity to commercial bovine trypsin (44%), MBSP from lizard fish skeletal muscle (33%) and trypsinogen from ostrich pancreas (22%).  相似文献   
7.
Summary Calliphora erythrocephala has cross-striated cardiac muscle cells with A, I and Z-bands. The diameters of the myosin and actin filaments are 200–250 Å and 85 Å respectively and the length of the myosin filaments (A-band) is approximately 1.5 . Usually 8–10 actin filaments surround each myosin filament.The myocardial cells show a well-developed membrane system and interior couplings. A perforated sheet of SR envelopes the myofibrils at the A-band, dilates into flattened cisternae at both A-I band levels before it merges into a three-dimensional net-work between the actin filaments of the I-bands and between the dense bodies of the discontinuous Z-discs. The T-system consists of broad flattened tubules running between the myofibrils at the A-I band levels forming dyads with the SR-cisternae. Longitudinal connections between the transverse (T-) tubules often occur.It is suggested that this well-developed SR may be an adaptation to facilitate a rapid contraction/relaxation frequency by an effective Ca2+ uptake.  相似文献   
8.
We studied O-linked β-N-acetylglucosamine (O-GlcNAc) modification of contractile proteins in human heart using SDS-PAGE and three detection methods: specific enzymatic conjugation of O-GlcNAc with UDP-N-azidoacetylgalactosamine (UDP-GalNAz) that is then linked to a tetramethylrhodamine fluorescent tag and CTD110.6 and RL2 monoclonal antibodies to O-GlcNAc. All three methods showed that O-GlcNAc modification was predominantly in a group of bands ∼90 kDa that did not correspond to any of the major myofibrillar proteins. MALDI-MS/MS identified the 90-kDa band as the protein ZASP (Z-band alternatively spliced PDZ motif protein), a minor component of the Z-disc (about 1 per 400 α-actinin) important for myofibrillar development and mechanotransduction. This was confirmed by the co-localization of O-GlcNAc and ZASP in Western blotting and by immunofluorescence microscopy. O-GlcNAcylation of ZASP increased in diseased heart, being 49 ± 5% of all O-GlcNAc in donor, 68 ± 9% in end-stage failing heart, and 76 ± 6% in myectomy muscle samples (donor versus myectomy p < 0.05). ZASP is only 22% of all O-GlcNAcylated proteins in mouse heart myofibrils.  相似文献   
9.
In the past few years a great deal of progress has been made in studying the mechanical and structural properties of biological protein fibers. Here, we compare and review the stiffness (Young’s modulus, E) and breaking strain (also called rupture strain or extensibility, εmax) of numerous biological protein fibers in light of the recently reported mechanical properties of fibrin fibers. Emphasis is also placed on the structural features and molecular mechanisms that endow biological protein fibers with their respective mechanical properties. Generally, stiff biological protein fibers have a Young’s modulus on the order of a few Gigapascal and are not very extensible (εmax < 20%). They also display a very regular arrangement of their monomeric units. Soft biological protein fibers have a Young’s modulus on the order of a few Megapascal and are very extensible (εmax > 100%). These soft, extensible fibers employ a variety of molecular mechanisms, such as extending amorphous regions or unfolding protein domains, to accommodate large strains. We conclude our review by proposing a novel model of how fibrin fibers might achieve their extremely large extensibility, despite the regular arrangement of the monomeric fibrin units within a fiber. We propose that fibrin fibers accommodate large strains by two major mechanisms: (1) an α-helix to β-strand conversion of the coiled coils; (2) a partial unfolding of the globular C-terminal domain of the γ-chain. The senior authors R. R. Hantgan and S. T. Lord have contributed equally to this article.  相似文献   
10.
The discovery of the naturally occurring cardiac non-function (c) animal strain in Ambystoma mexicanum (axolotl) provides a valuable animal model to study cardiomyocyte differentiation. In homozygous mutant animals (c/c), rhythmic contractions of the embryonic heart are absent due to a lack of organized myofibrils. We have previously cloned a partial sequence of a peptide cDNA (N1) from an anterior-endoderm-conditioned-medium RNA library that had been shown to be able to rescue the mutant phenotype. In the current studies we have fully cloned the N1 full length cDNA sequence from the library. N1 protein has been detected in both adult heart and skeletal muscle but not in any other adult tissues. GFP-tagged expression of the N1 protein has revealed localization of the N1 protein in the endoplasmic reticulum (ER). Results from in situ hybridization experiments have confirmed the dramatic decrease of expression of N1 mRNA in mutant (c/c) embryos indicating that the N1 gene is involved in heart development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号