首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   1篇
  国内免费   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   9篇
  2010年   6篇
  2009年   11篇
  2008年   10篇
  2007年   11篇
  2006年   10篇
  2005年   14篇
  2004年   5篇
  2003年   8篇
  2002年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
1.
The Drosophila sponge (spg)/CG31048 gene belongs to the dedicator of cytokinesis (DOCK) family genes that are conserved in a wide variety of species. DOCK family members are known as DOCK1–DOCK11 in mammals. Although DOCK1 and DOCK2 involve neurite elongation and immunocyte differentiation, respectively, the functions of other DOCK family members are not fully understood. Spg is a Drosophila homolog of mammalian DOCK3 and DOCK4. Specific knockdown of spg by the GMR-GAL4 driver in eye imaginal discs induced abnormal eye morphology in adults. To mark the photoreceptor cells in eye imaginal discs, we used a set of enhancer trap strains that express lacZ in various sets of photoreceptor cells. Immunostaining with anti-Spg antibodies and anti-lacZ antibodies revealed that Spg is localized mainly in R7 photoreceptor cells. Knockdown of spg by the GMR-GAL4 driver reduced signals of R7 photoreceptor cells, suggesting involvement of Spg in R7 cell differentiation. Furthermore, immunostaining with anti-dpERK antibodies showed the level of activated ERK signal was reduced extensively by knockdown of spg in eye discs, and both the defects in eye morphology and dpERK signals were rescued by over-expression of the Drosophila raf gene, a component of the ERK signaling pathway. Furthermore, the Duolink in situ Proximity Ligation Assay method detected interaction signals between Spg and Rap1 in and around the plasma membrane of the eye disc cells. Together, these results indicate Spg positively regulates the ERK pathway that is required for R7 photoreceptor cell differentiation and the regulation is mediated by interaction with Rap1 during development of the compound eye.  相似文献   
2.
Traditionally, muscle cell lines are cultured on glass coverslips and differentiated to investigate myoblast fusion and differentiation. Efficient differentiation of myoblasts produces a dense network of myotubes with the correct organisation for contraction. Here we have tested the ability of artificially generated, precisely controlled peptide surfaces to enhance the efficiency of myoblast differentiation. We focused on specific short peptides from α-laminin-2 (IKVSV, VQLRNGFPYFSY and GLLFYMARINHA) as well as residues 15–155 from FGF1. We tested if these peptides in isolation, and/or in combination promoted muscle differentiation in culture, by promoting fusion and/or by improving sarcomere organisation. The majority of these peptides promoted fusion and differentiation in two different mouse myogenic cell lines and in primary human myoblasts. The additive effects of all four peptides gave the best results for both mouse cell lines tested, while primary human cell cultures differentiated equally well on most peptide surfaces tested. These data show that a mixture of short biomimetic peptides can reliably promote differentiation in mouse and human myoblasts.  相似文献   
3.
Cell-cell fusion   总被引:1,自引:0,他引:1  
Chen EH  Grote E  Mohler W  Vignery A 《FEBS letters》2007,581(11):2181-2193
Cell-cell fusion is a highly regulated and dramatic cellular event that is required for development and homeostasis. Fusion may also play a role in the development of cancer and in tissue repair by stem cells. While virus-cell fusion and the fusion of intracellular membranes have been the subject of intense investigation during the past decade, cell-cell fusion remains poorly understood. Given the importance of this cell-biological phenomenon, a number of investigators have begun analyses of the molecular mechanisms that mediate the specialized fusion events of a variety of cell types and species. We discuss recent genetic and biochemical studies that are beginning to yield exciting insights into the fusion mechanisms of Saccharomyces cerevisiae mating pairs, Caenorhabditis elegans epithelial cells and gametes, Drosophila melanogaster and mammalian myoblasts, and mammalian macrophages.  相似文献   
4.
Overexpression of ILK in L6 myoblasts results in increased ILK kinase activity, stimulating myotube formation and induction of biochemical differentiation markers. Expression of a dominant negative ILK mutant, ILK(E359K), inhibits endogenous ILK activation and L6 differentiation. Cell cycle analysis of ILK(E359K) cells cultured in serum-free conditions indicates significant apoptosis (11-19% sub-diploid peak) which is not seen in insulin treated cells. Expression of ILK variants does not have significant effects on S-phase transit, however. Known targets of ILK, PKB/Akt or glycogen synthase kinase 3beta are not obviously involved in ILK-induced L6 differentiation. Insulin-stimulated phosphorylation of PKB at Ser473 is unimpaired in the ILK(E359K) cells, suggesting that PKB is not a myogenic target of ILK. Inhibition of GSK3beta by LiCl blocks L6 myogenesis, indicating that ILK-mediated inhibition of GSK3beta is not sufficient for differentiation. Our data do suggest that a LiCl-sensitive interaction of ILK is important in L6 myoblast differentiation.  相似文献   
5.
Skeletal muscle-derived CD34+/45- (Sk-34) cells were identified as a new candidate for stem cells. However, the relationship between Sk-34 cells and side-population (SP) cells is unknown. Here, we demonstrate that Sk-34 cells prepared from murine skeletal muscles consist wholly of main-population (MP) cells. The Sk-34 cells included only a few SP cells (1:1000, SP:MP). Colony-forming units of Sk-34 cells of both SP and MP possessed the same potential to differentiate into adipocytes, endothelial, and myogenic cells and showed the same colony-forming activity (1.6%). In addition, the colony-forming units of the CD34-/45- (double negative: DN) population were found to begin CD34 expression and to possess the potential to differentiate into myogenic and endothelial cells. We also found that expression of CD34 antigen precedes MyoD expression during the myogenic process of DN cells. Furthermore, both Sk-34 and DN cell populations were mostly negative for CD73 (93-95%), whereas the CD45+ cell population was >25% positive for CD73, and this trend was also seen in bone marrow-derived CD45+ cells. These results indicate that the MP cell population is about 99.9% responsible for the reported in vitro myogenic-endothelial responses of skeletal muscle-derived cells.  相似文献   
6.
Skeletal myogenesis is a precise procedure marked by specific changes in muscle cell morphology and cytoarchitecture. Cessation of proliferation by skeletal muscle precursor cells (myoblasts) coincides with the induction of fusion to form multinucleated myotubes and the initiation of differentiation, the process through which sarcomeres are formed. Concurrently, there is a distinct upregulation in expression of muscle-specific isoforms and an extreme downregulation of non-muscle-specific cytoskeletal isoforms. The sarcomere is the contractile unit of the cell and is comprised of a number of different proteins aggregated and aligned in very ordered arrays along the myotube. It is this rigorously controlled alignment that gives striated muscle its characteristic "striped" appearance. Previous studies, conducted predominantly in cardiac muscle, propose models for the development of the sarcomere that attribute little of the differentiative process to the myoblast morphology and cytoskeletal arrangement. In this study, perturbation of myoblast morphology and cytoskeletal arrangement by transfection with nonmuscle actin genes in the mouse skeletal muscle cell line C2 resulted in myotubes of both varied morphology and sarcomeric structure. The results presented herein not only provide novel insights into the formation of the sarcomere in skeletal muscle, but also suggest a role for myoblast morphology and cytoskeletal structure in the subsequent differentiation of the myotube.  相似文献   
7.
Animal and clinical studies indicated that the androgen-AR signaling pathway is required for appropriate development of sexually dimorphic skeletal muscles and increases lean muscle mass, muscle strength, and muscle protein synthesis. However, the detailed mechanisms by which the androgen-AR signaling pathway regulates skeletal muscle development need further study at the molecular level. C2C12 myoblast cells stably transfected with the Flag-tagged AR were used to analyze the role of androgen-AR signaling pathway in skeletal muscle development. The results indicate that the androgen-AR signaling pathway may suppress skeletal myoblast cell growth and accelerate myoblast cell differentiation via enhanced myogenin expression. This is a first report showing the role of androgen-AR signaling pathway in regulation of myoblast cell growth and myogenic regulatory factors.  相似文献   
8.
Calpains, also called calcium activated neutral cysteine proteases are presently known to play pivotal roles in physiological and biological phenomena such as signal transduction, cell spreading and motility, apoptosis, regulation of cell cycle and regulation of muscle cell differentiation. Concerning this last point, calpains have been shown to play a crucial role during the earlier myogenesis. In this study we have analyzed the involvement of calpains during an important step of myogenesis: myoblast migration. Our findings show that myoblast migration was drastically reduced when the expression of micro- and m-calpain was decreased. We have also observed that MARCKS (myristoylated alanine rich C kinase substrate), a protein localized at focal adhesion sites, was significantly accumulated when the expression levels of calpains were decreased. Also, using phorbol myristate acetate, (an activator of PKC) and plasmids carrying the full-length cDNA of MARCKS or a cDNA fragment lacking the phosphorylation site domain, we demonstrated that normal myoblast migration is dependent on MARCKS phosphorylation and localization.  相似文献   
9.
Myoblast fusion (a critical process by which muscles grow) occurs in a multi-step fashion that requires actin and membrane remodeling; but important questions remain regarding the spatial/temporal regulation of and interrelationship between these processes. We recently reported that the Rho-GAP, GRAF1, was particularly abundant in muscles undergoing fusion to form multinucleated fibers and that enforced expression of GRAF1 in cultured myoblasts induced robust fusion by a process that required GAP-dependent actin remodeling and BAR domain-dependent membrane sculpting. Herein we developed a novel line of GRAF1-deficient mice to explore a role for this protein in the formation/maturation of myotubes in vivo. Post-natal muscles from GRAF1-depleted mice exhibited a significant and persistent reduction in cross-sectional area, impaired regenerative capacity and a significant decrease in force production indicative of lack of efficient myoblast fusion. A significant fusion defect was recapitulated in isolated myoblasts depleted of GRAF1 or its closely related family member GRAF2. Mechanistically, we show that GRAF1 and 2 facilitate myoblast fusion, at least in part, by promoting vesicle-mediated translocation of fusogenic ferlin proteins to the plasma membrane.  相似文献   
10.
目的:探讨"应力-生长(改建)"在细胞水平上的体现,为功能矫形治疗和矫治效果的保持提供新思路和实验依据。方法:本实验选用20只4周龄,雄性SD大鼠随机分为8组。其中实验组大鼠经戊巴比妥麻醉后佩戴上颌斜面导板,对照组未佩用。依据时间不同又分为四组:1d,7d,14d,21d。采用RT-PCR技术分析各组大鼠翼外肌组织中肌分化相关基因MyoD、myogenin mRNA的表达变化。结果:未施加功能矫形力的大鼠翼外肌组织MyoD表达伴随其生长发育呈现递减趋势,实验组在第7 d出现表达上调。同时,力学刺激后实验组动物myogenin的表达与对照组相比较在14 d组出现明显上调。结论:功能矫形力作用于翼外肌组织可以诱导MyoD和myogenin的表达上调进而诱导成肌细胞的分化。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号