首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3091篇
  免费   65篇
  国内免费   21篇
  2023年   19篇
  2022年   62篇
  2021年   86篇
  2020年   63篇
  2019年   89篇
  2018年   72篇
  2017年   77篇
  2016年   62篇
  2015年   101篇
  2014年   232篇
  2013年   249篇
  2012年   134篇
  2011年   207篇
  2010年   152篇
  2009年   109篇
  2008年   134篇
  2007年   128篇
  2006年   108篇
  2005年   89篇
  2004年   98篇
  2003年   81篇
  2002年   40篇
  2001年   24篇
  2000年   43篇
  1999年   51篇
  1998年   42篇
  1997年   57篇
  1996年   38篇
  1995年   45篇
  1994年   43篇
  1993年   38篇
  1992年   45篇
  1991年   43篇
  1990年   19篇
  1989年   31篇
  1988年   23篇
  1987年   16篇
  1986年   12篇
  1985年   18篇
  1984年   16篇
  1983年   19篇
  1982年   24篇
  1981年   18篇
  1980年   18篇
  1979年   16篇
  1978年   10篇
  1977年   11篇
  1976年   13篇
  1973年   14篇
  1972年   14篇
排序方式: 共有3177条查询结果,搜索用时 15 毫秒
1.
(+)-2,9 alpha-Dimethyl-5-(m-hydroxyphenyl)morphan is the only phenylmorphan analog whose affinity for opioid kappa-receptors is greater than its affinity for opioid mu-receptors. Pharmacologically, the compound is a pure opioid antagonist devoid of agonist activity in in vivo assays of antinociception. The absolute configuration of the compound has been determined to be (1R,5S,9R) from an X-ray crystallographic study of the chloride salt. Thus, the absolute configuration corresponds to that of the atypical opioid agonist (-)-phenylmorphan while the weak atypical agonist (-)-2,9 alpha-dimethyl-5-(m- hydroxyphenyl)morphan corresponds to the potent morphine-like (+)-phenylmorphan. The preferred orientations of the phenyl ring for the two stereoisomers were determined using the molecular mechanics program MM2-87 and found to vary from that of the two parent compounds. The atypical properties of the two 9 alpha-methyl analogs is consistent with an opioid ligand model which proposes that morphine-like properties require a particular range of phenyl orientations. There was good agreement between the structure obtained from X-ray crystallography and computed with the MM2-87 program.  相似文献   
2.
In the large arteries, it is believed that elastin provides the resistance to stretch at low pressure, while collagen provides the resistance to stretch at high pressure. It is also thought that elastin is responsible for the low energy loss observed with cyclic loading. These tenets are supported through experiments that alter component amounts through protease digestion, vessel remodeling, normal growth, or in different artery types. Genetic engineering provides the opportunity to revisit these tenets through the loss of expression of specific wall components. We used newborn mice lacking elastin (Eln−/−) or two key proteins (lysyl oxidase, Lox−/−, or fibulin-4, Fbln4−/−) that are necessary for the assembly of mechanically-functional elastic fibers to investigate the contributions of elastic fibers to large artery mechanics. We determined component content and organization and quantified the nonlinear and viscoelastic mechanical behavior of Eln−/−, Lox−/−, and Fbln4−/− ascending aorta and their respective controls. We confirmed that the lack of elastin, fibulin-4, or lysyl oxidase leads to absent or highly fragmented elastic fibers in the aortic wall and a 56–97% decrease in crosslinked elastin amounts. We found that the resistance to stretch at low pressure is decreased only in Eln−/− aorta, confirming the role of elastin in the nonlinear mechanical behavior of the aortic wall. Dissipated energy with cyclic loading and unloading is increased 53–387% in Eln−/−, Lox−/−, and Fbln4−/− aorta, indicating that not only elastin, but properly assembled and crosslinked elastic fibers, are necessary for low energy loss in the aorta.  相似文献   
3.
The structure of the tightly bound complex of the globular myosin head with F-actin is the key to understanding important details of the mechanism of how the actin-myosin motor functions. The current notion on this complex is based on the docking of known atomic structures of constituent proteins into low-resolution electron-density maps. The atomic structure of the complex was refined by the molecular mechanics method, which consists in minimizing the energy of molecular interaction and which makes it possible to optimize not only the relative position of protein backbones as rigid bodies, but also the position of side chains on the protein interface. The structure calculated using ICM-Pro software, on the one hand, is close to the model obtained using electron microscopy; on the other hand, it ensures the best calculated interaction energy and accounts for the results of mutagenesis experiments. On the basis of the structure obtained, we can suggest the molecular mechanisms underlying the actin-activated release of ATP hydrolysis products from myosin and the decrease in the affinity of myosin for actin upon binding of nucleotides.  相似文献   
4.
Soldiers routinely conduct load carriage and physical training to meet occupational requirements. These tasks are physically arduous and are believed to be the primary cause of musculoskeletal injury. Physical training can help mitigate injury risk when specifically designed to address injury mechanisms and meet task demands. This study aimed to assess lower-limb biomechanics and neuromuscular adaptations during load carriage walking in response to a 10-week evidence-based physical training program. Thirteen male civilian participants donned 23 kg and completed 5 km of load carriage treadmill walking, at 5.5 km h−1 before and after a 10-week physical training program. Three-dimensional motion capture and force plate data were acquired in over-ground walking trials before and after treadmill walking. These data were inputs to a musculoskeletal model which estimated lower-limb joint kinematics and kinetics (i.e., moments and powers) using inverse kinematics and dynamics, respectively. A two-way analysis of variance revealed significant main effect of training for kinematic and kinetics parameters at the knee and ankle joints (p < 0.05). Post-Hoc comparisons demonstrated a significant decrease (4.2%) in total negative knee power between pre- and post-March 5 km measures after training (p < 0.05). Positive power contribution shifted distally after training, increasing at the post-march measure from 39.9% to 43.6% at the ankle joint (p < 0.05). These findings demonstrate that a periodised training program may reduce injury risk through favourable ankle and knee joint adaptations.  相似文献   
5.
During range of motion (max-ROM) tests performed on an isokinetic dynamometer, the mechanical delay between the button press (by the participant to signal their max-ROM) and the stopping of joint rotation resulting from system inertia induces errors in both max-ROM and maximum passive joint moment. The present study aimed to quantify these errors by comparing data when max-ROM was obtained from the joint position data, as usual (max-ROMPOS), to data where max-ROM was defined as the first point of dynamometer arm deceleration (max-ROMACC). Fifteen participants performed isokinetic ankle joint max-ROM tests at 5, 30 and 60° s−1. Max-ROM, peak passive joint moment, end-range musculo-articular (MAC) stiffness and area under the joint moment-position curve were calculated. Greater max-ROM was observed in max-ROMPOS than max-ROMACC (P < 0.01) at 5 (0.2 ± 0.15%), 30 (1.8 ± 1.0%) and 60° s−1 (5.9 ± 2.3%), with the greatest error at the fastest velocity. Peak passive moment was greater and end-range MAC stiffness lower in max-ROMPOS than in max-ROMACC only at 60° s−1 (P < 0.01), whilst greater elastic energy storage was found at all velocities. Max-ROM and peak passive moment are affected by the delay between button press and eventual stopping of joint rotation in an angular velocity-dependent manner. This affects other variables calculated from the data. When high data accuracy is required, especially at fast joint rotation velocities (≥30° s−1), max-ROM (and associated measures calculated from joint moment data) should be taken at the point of first change in acceleration rather than at the dynamometer’s ultimate joint position.  相似文献   
6.
Summary The effect of 16 weeks total starvation on the ultrastructure of the red and white myotomal muscles of the crucian carp (Carassius Carassius) has been investigated. In the white fibres the amount of myofibrillar material fell from 89.6% to 70.7% of the total fibre volume whilst in the red fibres the fall was from 72.2% to 70.3%. The sarcoplasmic reticulum appeared to have become swollen during starvation in both fibre types. In the white fibres the terminal cisternae of some triads seem to have fused. The volume of the red fibres occupied by mitochondria was reduced from 16.2 % to 5.9 %. The concentration of mitochondria in the white fibres was too low to detect any quantitative changes. A marked reduction in the amount of euchromatin material was observed in most white fibre nuclei and many red fibre nuclei. Many of the ultrastructural changes noted in the present study can be correlated with biochemical changes known to occur in the red and white myotomal muscles of fish during starvation. This work was supported by a grant from the Natural Environmental Research Council.  相似文献   
7.
The purpose of the study was to analyse the effect of arm-shoulder fatigue on manual performance. Ten experienced carpenters performed three standardized tasks (nailing, sawing and screwing). Electromyographic activity was recorded from six arm-shoulder muscles and the performances were video-filmed. After 45 min of standardized arm-cranking (arm-shoulder-fatiguing exercise of approximately 70%-80% maximal oxygen consumption), the tasks were repeated. The number of work movements and the time taken for each task were recorded and the quality of the work performed was compared. After the fatiguing exercise, only nailing was perceived as being harder and more mistakes were made during nailing and sawing. Movement performance was not influenced during nailing but was slightly slower during sawing and faster during screwing. However, there were increased mean EMG amplitudes in the upper trapezius and biceps muscles during nailing, in the upper trapezius, anterior deltoid and infraspinatus muscles during sawing and in the anterior deltoid muscle during screwing. Of the muscles studied the upper trapezius and anterior deltoid muscles increased their activity most after the arm-shoulder-fatiguing exercise.  相似文献   
8.
The cell surface is a mechanobiological unit that encompasses the plasma membrane, its interacting proteins, and the complex underlying cytoskeleton. Recently, attention has been directed to the mechanics of the plasma membrane, and in particular membrane tension, which has been linked to diverse cellular processes such as cell migration and membrane trafficking. However, how tension across the plasma membrane is regulated and propagated is still not completely understood. Here, we review recent efforts to study the interplay between membrane tension and the cytoskeletal machinery and how they control cell form and function. We focus on factors that have been proposed to affect the propagation of membrane tension and as such could determine whether it can act as a global or local regulator of cell behavior. Finally, we discuss the limitations of the available tool kit as new approaches that reveal its dynamics in cells are needed to decipher how membrane tension regulates diverse cellular processes.  相似文献   
9.
Summary The medullary pyramid of renculi in kidneys of ringed seals (Phoca hispida) is enclosed by a basket composed of ribbons of stromal tissue continuous with the wall of the calyx. Branched smooth muscle cells with well-developed Golgi complexes and rough endoplasmic reticulum and only an incomplete external lamina are the principal cells in sites near the origin of the ribbons from the calycal wall. Deeper in the corticomedullary junctional region, smooth muscle is progressively replaced with stellate or spindle-shaped cells exhibiting structural characteristics intermediate between those of fibroblasts and smooth muscle fibers. These myofibroblast-like cells contain arrays of parallel microfilaments 6–8 nm thick with associated focal densities and subplasmalemmal dense plaques, caveolae, elongate, often deeply wrinkled nuclei, and well-developed Golgi complexes and rough endoplasmic reticulum. Material resembling external lamina is associated with parts of the surfaces of most myofibroblast-like cells and intermediate junctions are present. Fibroblasts lacking arrays of parallel microfilaments are a minority at any level in the stromal ribbons. Interstitial cells in the vicinity of the corticomedullary junction show similar myofibroblast-like characteristics. The smooth muscle and myofibroblast-like cells presumably assist expression of urine from the papilla and calyx, and possibly participate as pacemakers for the urinary tract.  相似文献   
10.
The membrane type-1 matrix metalloproteinase (MT1-MMP) is a unique member of the MMP family, but induction patterns and consequences of MT1-MMP overexpression (MT1-MMPexp), in a left ventricular (LV) remodeling process such as myocardial infarction (MI), have not been explored. MT1-MMP promoter activity (murine luciferase reporter) increased 20-fold at 3 days and 50-fold at 14 days post-MI. MI was then induced in mice with cardiac restricted MT1-MMPexp (n = 58) and wild type (WT, n = 60). Post-MI survival was reduced (67% versus 46%, p < 0.05), and LV ejection fraction was lower in the post-MI MT1-MMPexp mice compared with WT (41 ± 2 versus 32 ± 2%,p < 0.05). In the post-MI MT1-MMPexp mice, LV myocardial MMP activity, as assessed by radiotracer uptake, and MT1-MMP-specific proteolytic activity using a specific fluorogenic assay were both increased by 2-fold. LV collagen content was increased by nearly 2-fold in the post-MI MT1-MMPexp compared with WT. Using a validated fluorogenic construct, it was discovered that MT1-MMP proteolytically processed the pro-fibrotic molecule, latency-associated transforming growth factor-1 binding protein (LTBP-1), and MT1-MMP-specific LTBP-1 proteolytic activity was increased by 4-fold in the post-MI MT1-MMPexp group. Early and persistent MT1-MMP promoter activity occurred post-MI, and increased myocardial MT1-MMP levels resulted in poor survival, worsening of LV function, and significant fibrosis. A molecular mechanism for the adverse LV matrix remodeling with MT1-MMP induction is increased processing of pro-fibrotic signaling molecules. Thus, a proteolytically diverse portfolio exists for MT1-MMP within the myocardium and likely plays a mechanistic role in adverse LV remodeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号