首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2014年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) analysis of the nuclear ribosomal ITS-1 region was used to differentiate Muscidifurax (Hymenoptera: Pteromalidae) species which are parasitoids of filth fly pupae. Three restriction enzymes, Dpn II, Mse I, and Taq I, produced restriction patterns which were diagnostic for the four species analyzed, M. raptor, M. raptorellus, M. uniraptor, and M. zaraptor. Seven other restriction enzymes were able to differentiate one or more of the species and can be used alone, or in combination with other enzymes, to verify identifications. No intraspecific variation was observed among the populations examined. The utility of the PCR-RFLP technique compared with other molecular and biochemical diagnostic procedures is discussed.  相似文献   
2.
House fly, Musca domestica L., pupae were exposed to six species of pteromalid parasitoids, Muscidifurax zaraptor Kogan and Legner, M. raptor Girault and Sanders, M. raptorellus Kogan and Legner, Pachycrepoideus vindemiae (Rondani), Spalangia nigroaenea Curtis, and Urolepis rufipes Ashmead. Exposures were made for 48 h at six parasitoid-to-host ratios to measure the effect of parasitoid density on parasitoid-induced mortality (PIM) of hosts (excluding mortality as measured by parasitoid emergence). PIM was evident at all parasitoid-to-host ratios for all six species. Fly eclosion declined with a corresponding increase in the parasitoid-to-host ratio; the reverse was generally true for PIM. Parasitoid emergence increased initially with a corresponding increase in the parasitoid-to-host ratio to a point (depending on the parasitoid species), but then declined. The three Muscidifurax spp. and P. vindemiae exhibited similar behavior and generally avoided previously stung hosts until ovipositional restraints broke down at the higher parasitoid-to-host ratios. S. nigroaenea and U. rufipes exhibited little ovipositional restraint, resulting in a high proportion of PIM of hosts. Understanding factors that influence PIM will provide better evaluations of field releases of parasitoids to control flies and will aid in the development of the most economic procedures for large scale rearing of pteromalid parasitoids.  相似文献   
3.
Gas chromatographic analysis of cuticular hydrocarbons ofMuscidifuraxspp. adult females revealed species-specific patterns of composition that allowed identification ofMuscidifurax raptorGirault and Sanders,Muscidifurax zaraptorKogan and Legner, andMuscidifurax raptorellusKogan and Legner. A total of 18 components, all C29–C37 alkanes and methylalkanes, accounted for over 90% of the total cuticular hydrocarbons for all three species.Muscidifurax zaraptorwas characterized by a high ratio (11.9) of 3-MeC31:internal Me2C35's, whereas this ratio was <3 for the other species.Muscidifurax raptorelluswas characterized by a low (<1) 3-MeC31:3,7,15-Me3C37ratio compared with ratios of 3.1 and 6.3 for these components inM. raptorandM. zaraptor, respectively. Three populations ofM. raptorelluscould be distinguished from one another based on two other component ratios (5- and 7-MeC31:3MeC32, 5- and 7-MeC31:3,7- to 3,15-Me2C33) with either 100% (Nebraska population) or 90% (Chilean and Peruvian populations) certainty. Comparison ofM. raptorcolonies established from five different locations (Florida, France, Germany, Brazil, Hungary) indicated that the hydrocarbon pattern was highly conserved in this species. A dichotomous key to species based on ratios of cuticular hydrocarbon components unambiguously classified the 50 samples ofMuscidifuraxspp. used to construct the key, plus five additional samples from different geographic locations.  相似文献   
4.
Pupal parasitoids of muscoid flies were collected monthly on three farms in southern Israel in preparation for an IPM programme for the control of filth-breeding flies. 50% and 25.5% of viable puparia collected during 1985 and 1986/87, respectively, were parasitized. Three species of Spalangia Latreille and two species of Muscidifurax Girault & Saunders (Hymenoptera: Pteromalidae) accounted for 82.0% and 94.2% of parasitoids recovered in the two seasons. Variation in the seasonal abundance and distribution of the leading parasite species are discussed in connection with their conservation and possible use for augmentative releases within IPM projects.  相似文献   
5.
Competition bioassays were conducted with the filth fly pupal parasitoids Muscidurax raptor (Girault & Sanders) and M. raptorellus (Kogan & Legner) (Hymenoptera: Pteromalidae) using house fly Musca domestica L. (Diptera: Muscidae) hosts at different host densities. Muscidifurax raptor had a significant impact on M. raptorellus when hosts were limiting in sequential parasitism tests. Fewer than six M. raptorellus adult progeny emerged from groups of 50 fly pupae that were parasitized by M. raptor at the same time or when M. raptor parasitism preceded M. raptorellus by 48 h, respectively, compared with 42–55 M. raptorellus progeny produced when this species was tested alone. Production of M. raptor was significantly lower when parasitism by this species was preceded by M. raptorellus (25) than when M. raptor was tested alone (43). When the two species parasitized hosts at the same time in different proportions at low host:parasitoid densities (5:1), M. raptorellus produced 13 progeny per parent female when it was the sole species present and fewer than two when M. raptor was present. No negative impact of M. raptorellus on M. raptor was observed. Neither species had a substantial effect on the success of the other at higher host:parasitoid densities.  相似文献   
6.
The pteromalid wasp, Muscidifurax zaraptor Kogan and Legner, was released at three locations at a dairy in May before housefly and stable fly breeding had begun. Freeze-killed housefly pupae were placed adjacent to the emerging parasites at biweekly intervals for a 6-week period. Hosts placed out weeks 0 and 2 were heavily parasitized. Decreased parasitism in hosts placed out at week 4 suggested that many of the M. zaraptor had dispersed or died. High parasitism of hosts placed in the field at week 6 was the result of second generation parasites emerging from pupae placed out at week 0. Parasitism of freeze-killed housefly pupae placed 6 m and in the four cardinal directions from the release points was similar but lower than for hosts placed adjacent to the emerging parasites. The study demonstrated that emerging M. zaraptor readily utilized nearby freeze-killed housefly pupae but the availability of these hosts did not deter the parasites from searching for additional hosts.  相似文献   
7.
To understand genetic and phenotypic constraints on the sex ratio in a parasitic wasp that attacks fly pupae, I carried out a laboratory study of sex ratio variability in five strains of Muscidifurax raptor (Hymenoptera: Pteromalidae). I manipulated the environment through combinations of temperature and day length, and the numbers of females that attack a group of hosts. The change of phenotype in each strain over the range of environmental conditions describes the norm of each reaction for that strain, and measures how a strain responds to environmental variation to create phenotypic variability. Sex ratio in parasitic wasps is a complex trait that has several components—the numbers of eggs laid by an ovipositing wasp and the fraction of eggs that are fertilized (female). Further, sex ratio may be influenced by a female's reaction to other females exploiting the same hosts (superparasitism). I found no strain-environment interactions in either sex ratio or fecundity when I varied environmental conditions. Although strains differed in sex ratio and fecundity, all strains produced a more female-biased sex ratio and had higher fecundity when temperature and day length increased. Sex ratio and fecundity were phenotypically correlated, and strains with greater fecundity also produced a more female-biased sex ratio. All strains facultatively shifted sex ratio toward a higher fraction of males with increasing female density, despite apparent differences in superparasitism among strains. Males and females survived equally during development, so that mortality differences among strains and across environments could not account for sex ratio variability. This study indicates that sex ratio variability among strains is constrained by the correlation between sex ratio and fecundity, and that strains display similar facultative shifts in sex ratio as female density increases because sex ratio shifts are insensitive to differing levels of superparasitism.  相似文献   
8.
Sex ratio has been studied from many theoretical and empirical perspectives, but a general assumption in sex ratio research is that changes in sex ratio occur because of selection on sex ratio itself. I carried out a quantitative genetic experiment—a diallel cross among three strains—on a parasitic wasp, Muscidifurax raptor (Hymenoptera: Pteromalidae), to measure genetic variation for sex ratio. I also tested whether sex ratio may change as a consequence of selection on other life-history traits by estimating genetic covariances between sex ratio, fecundity, longevity, and development time. Most of the variation among strains could be accounted for by a maternal effect, likely caused by a microsporidian parasite that was transmitted through the West Germany (WG) strain. Genetic variation was small by comparison, but almost all traits were affected by dominance. The only significant additive genetic effect was for fecundity early in life. Upon crossing, all traits displayed heterosis: more female-biased sex ratio, greater fecundity, longer life, and faster development time. All life-history traits were correlated phenotypically, but the correlations were mainly the result of decreased performance in crosses with the WG strain that carried the microsporidian parasite. Dominance genetic correlations were also found between sex ratio, fecundity, and longevity. How the correlation between sex ratio and other life-history traits would affect sex ratio evolution depends upon the frequencies of sex-ratio genotypes within a population as well as the signs of the correlations, because sex ratio is under frequency-dependent selection whereas other traits are generally under directional selection. Although the results from crosses among laboratory populations should be approached with caution, the inbreeding depression (the difference between inbred and outcrossed progeny) found in M. raptor implies that the evolution of a female-biased sex ratio could be affected by selection for inbreeding avoidance.  相似文献   
9.
Development rates were determined for three pteromalid parasitoids of houseflies under constant and varying temperatures from 15 to 35°C.Muscidifurax raptorGirault and Sanders was the fastest developing species, with females completing development in 13.8 days at 32.5°C and 66.5 days at 15°C.Spalangia geminaBoucek females completed development in 20.8 days at 30.0°C and 161 days at 15.0°C, whereasS. cameroniPerkins females completed development in 20.6 days at 30.0°C and 155.5 days at 15.0°C. Male development times were 90.3% of those for femaleS. geminaand 92.7 and 88.6% of those for femaleS. cameroniandM. raptor,respectively. Parasitoid survival was very low at 35°C for all species and noSpalangiasurvived constant exposure to 15.0°C. Exposure to these lethal temperatures for shorter periods indicated that the parasitoids can tolerate them well under conditions more typical of the field. Development rates were modeled using biophysical and degree-day models and the models were tested for their ability to predict development under fluctuating conditions (24–36°C). Neither model was superior for all three species because of interspecific differences in the parasitoids' responses to high temperatures. Agreement between predicted and observed development times for all three species was achieved by small empirical adjustments of a key parameter in the biophysical model.  相似文献   
10.
Laboratory experiments were performed to assess the effects of age, status (fresh versus freezekilled), and storage regime on the suitability of house fly, Musca domestica L. (Diptera: Muscidae) pupae as hosts for Muscidifurax raptor Girault & Saunders, M. raptorellus Kogan & Legner, M. zaraptor Kogan & Legner, Spalangia cameroni Perkins, Trichomalopsis sarcophagae (Gahan) and Urolepis rufipes (Ashmead) (Hymenoptera: Pteromalidae). Production of all species was maximized on pupae aged 24 + h post-pupation. Fresh pupae could not be refrigerated at 10°C or less, or at 15°C without a significant decline in their suitability as hosts. Although production of S. cameroni was essentially limited to the use of fresh house fly pupae, M. raptor , M. raptorellus , M. zaraptor , T. sarcophagae and U. rufipes could be reared on either fresh or freeze-killed pupae stored at - 20 °C for up to 6 months prior to parasitism. The suitability of freeze-killed pupae declined during storage when used for production of male and female M. raptorellus and M. zaraptor , and possibly for male T. sarcophagae . No other effects of storage on parasitoid production were detected. These results suggest that insectaries can stockpile fly pupae in freezers during times of overproduction for future use in mass-rearing M. raptor, M. raptorellus, M. zaraptor, T. sarcophagae and U. rufipes as biocontrol agents of filth flies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号