首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  国内免费   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2006年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1996年   1篇
  1994年   1篇
  1987年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
2.
Time constants of slow inactivation were investigated in NH(2)-terminal deleted Shaker potassium channels using macro-patch recordings from Xenopus oocytes. Slow inactivation is voltage insensitive in physiological solutions or in simple experimental solutions such as K(+)(o)//K(+)(i) or Na(+)(o)//K(+)(i). However, when [Na(+)](i) is increased while [K(+)](i) is reduced, voltage sensitivity appears in the slow inactivation rates at positive potentials. In such solutions, the I-V curves show a region of negative slope conductance between approximately 0 and +60 mV, with strongly increased outward current at more positive voltages, yielding an N-shaped curvature. These changes in peak outward currents are associated with marked changes in the dominant slow inactivation time constant from approximately 1.5 s at potentials less than approximately +60 mV to approximately 30 ms at more than +150 mV. Since slow inactivation in Shaker channels is extremely sensitive to the concentrations and species of permeant ions, more rapid entry into slow inactivated state(s) might indicate decreased K(+) permeation and increased Na(+) permeation at positive potentials. However, the N-shaped I-V curve becomes fully developed before the onset of significant slow inactivation, indicating that this N-shaped I-V does not arise from permeability changes associated with entry into slow inactivated states. Thus, changes in the relative contributions of K(+) and Na(+) ions to outward currents could arise either: (a) from depletions of [K(+)](i) sufficient to permit increased Na(+) permeation, or (b) from voltage-dependent changes in K(+) and Na(+) permeabilities. Our results rule out the first of these mechanisms. Furthermore, effects of changing [K(+)](i) and [K(+)](o) on ramp I-V waveforms suggest that applied potential directly affects relative permeation by K(+) and Na(+) ions. Therefore, we conclude that the voltage sensitivity of slow inactivation rates arises indirectly as a result of voltage-dependent changes in the ion occupancy of these channels, and demonstrate that simple barrier models can predict such voltage-dependent changes in relative permeabilities.  相似文献   
3.
The Tale-Zang Formation in Zagros Mountains (south-west Iran) is a Lower to Middle Eocene carbonate sequence. Carbonate sequences of the Tale-Zang Formation consist mainly of large benthic foraminifera (e.g. Nummulites and Alveolina), along with other skeletal and non-skeletal components. Water depth during deposition of the formation was determined based on the variation and types of benthic foraminifera, and other components in different facies. Microfacies analysis led to the recognition of ten microfacies that are related to four facies belts such as tidal flat, lagoon, shoal and open marine. An absence of turbidite deposits, reefal facies, gradual facies changes and widespread tidal flat deposits indicate that the Tale-Zang Formation was deposited in a carbonate ramp environment. Due to the great diversity and abundance of larger benthic foraminifera, this carbonate ramp is referred to as a “foraminifera-dominated carbonate ramp system”. Based on the field observations, microfacies analysis and sequence stratigraphic studies, three third-order sequences in the Langar type section and one third-order sequence in the Kialo section were identified. These depositional sequences have been separated by both type-1 and type-2 sequence boundaries. The transgressive systems tracts of sequences show a gradual upward increase in perforate foraminifera, whereas the highstand systems tracts of sequences contain predominantly imperforate foraminifera.  相似文献   
4.
Summary The Middle Ordovician Duwibong Formation (about 100 m thick), Korea, comprises various lithotypes deposited across a carbonate ramp. Their stacking patterns constitute several kinds of meter-scale, shallowing-upward carbonate cycles. Lithofacies associations are grouped into four depositional facies: deep- to mid-ramp, shoal-complex, lagoonal, and tidal-flat facies. These facies are composed of distinctive depositional cycles: deep subtidal, shallow subtidal, restricted marine, and peritidal cycles, respectively. The subtidal cycles are capped by subtidal lithofacies and indicate incomplete shallowing to the peritidal zone. The restricted marine and peritidal cycles are capped by tidal flat lithofacies and show evidence of subaerial exposure. These cycles were formed by higher frequency sea-level fluctuations with durations of 120 ky (fifth order), which were superimposed on the longer term sea-level events, and by sediment redistribution by storm-induced currents and waves. The stratigraphic succession of the Duwibong Formation represents a general regressive trend. The vertical facies change records the transition from a deep- to mid-ramp to shoal, to lagoon, into a peritidal zone. The depositional system of the Duwibong Formation was influenced by frequent storms, especially on the deep ramp to mid-ramp seaward of ooid shoals. The storm deposits comprise about 20% of the Duwibong sequence.  相似文献   
5.
Summary In the castern Anti-Atlas (SE Morocco), a small sedimentary basin (Mader Basin) evolved during the late Palacozoic. The Middle Devonian deposits consist of shales and limestones with a thickness up to 700 m in the depocentre. Sedimentary structures and sole marks of Middle Devonian limestones indicate transport from the northwest and the south towards the basin centre, located in the central Mader area. Lithostratigraphic, biostratigraphic, and dynamic stratigraphic approaches were applied to correlate stratigraphic sections. Five correlatable large-scale base-level hemicycles were recognized in the Middle Devonian succession. Thickness trends of Middle Devonian deposits, regional correlations, and facies-trends reveal the geometry of a carbonate ramp. The carbonate ramp was slightly inclined (<1°) to the NE. A sedimentary wedge, consisting of limestones and limestone/marl alternations, was deposited during the Eifelian and marks the transition from the ramp to the adjacent basin. Middle Devonian water depths are estimated as close to and within the storm wave-base at the southern area of the ramp and far below storm wave-base in the northeastern part of the ramp. Shallowest conditions (inner-ramp environment), close or within the fairweather wave-base, existed during the early Givetian as documented by the abundance of recfal fauna (stromatoporoids, corals) and calcimicrobes (lumps, micritic envelopes) in the eastern and southeastern area of the ramp.  相似文献   
6.
During maximum effort, the supraspinatus muscle contributes approximately 50% of the torque need to elevate the arm, but this has not been examined at sub-maximal levels. The purpose of this study was to determine the contribution of the supraspinatus muscle to shoulder elevation at sub-maximal levels. Seven healthy subjects (four males, three females) performed isometric ramp contractions at the shoulder. Middle deltoid electromyography (EMG) and force applied at the wrist were collected before and after a suprascapular nerve block. For the same level of deltoid EMG, less external force will be measured after the nerve block as the supraspinatus muscle no longer contributes. The difference between the EMG/force curve was the contribution of the supraspinatus muscle. The supraspinatus contributed 40%, 95% CI [32%–48%], to shoulder elevation. The effect of angle (p = .67) and % maximal voluntary contraction (p = .13) on supraspinatus contribution were not significant. The maximum is slightly less than reported in a previous suprascapular nerve block study using maximal contractions. The results from this study can be used to assess supraspinatus contribution in rotator cuff tears, after rehabilitation interventions, and as a restraint in computation modelling.  相似文献   
7.
Ability to survive exposure to single or repeated periods at a subzero temperature is related to the temperature experienced, whether it is approached quickly or slowly, the time for which it prevails and the interval between exposures.The severity of any low temperature can be expressed in terms of LE50 (time required to kill 50% of individuals with one exposure). Minima enduring for 35% LE50 do not cause any mortality, even when repeated daily. Minima enduring for 44% LE50 cause ca 14% mortality on the first occurrence but no more if repeated at 3 day intervals, but 3% more per occasion if repeated daily. Minima enduring for 88% LE50 cause ca 40% mortality on first occurrence and an equal amount at each recurrence even if each is 7 days apart. Minima enduring for 125% LE50 and over 150% LE50 cause respectively ca 80% and 100% mortality respectively on first occurrence.The daily maximum temperature (in the range 15°C to 25°C) appears to have little relevance to the mortality caused by a repeated minimum of -5°C. Flies of different ages have a similar ability to survive a repeated minimum of -6°C for up to six exposures, but thereafter old flies are more susceptible than young ones.These results can be related to mortality caused by frosty conditions in the field so long as the time spent at the minimum is known and the temperature on the ground can be measured or calculated.
Résumé L'aptitude à survivre à une ou plusieurs expositions à des températures inférieures à zéro dépend à la fois de leur sévérité et du laps de temps entre les expositions. L'effet d'une température minimale déterminée dépend de sa valeur, de sa durée et du type de refroidissement: brutal (step) ou progressif (ramp).Les effets de toute température minimale peuvent être exprimés en termes de LE50 (temps nécessaire pour obtenir une mortalité de 50% avec une exposition unique). Lorsque le temps d'application de la température minimale correspond à 35% du LE50, il n'y a pas de mortalité, de même dans le cas de répétitions quotidiennes. Lorsque le minimum est subi pendant 44% du LE50, il provoque environ 14% de mortalité après la première exposition, avec 3% supplémentaire après chaque exposition quotidienne, mais l'augmentation est nulle si l'exposition au froid n'a lieu que tous les 3 jours. Lorsque le minimum est subi pendant 88% de LE50, la mortalité après la première exposition est d'environ 40% et de même importance à chaque nouvelle exposition, même si elles sont espacées de 7 j. Lorsque la durée d'exposition au minimum correspond à 125% et à 150% de LE50, les mortalités sont respectivement d'environ 80% et 100% à la première exposition.La température maximale quotidienne, entre 15 et 25°C, semble avoir peu d'influence sur la mortalité provoquée par des expositions répétées à-5°C. Les mouches d'âges différents résistent de la même façon jusqu'à 6 expositions répétées à-6°C, mais au-delà les mouches âgées sont plus sensibles que les jeunes.Dans la mesure où, dans la nature, la durée d'exposition à la température minimale est connue et où la température dans le sol peut être calculée ou mesurée, ces résultats peuvent permettre d'interpréter la mortalité provoquée par le gel.
  相似文献   
8.
Thomas Wotte 《Facies》2009,55(3):473-487
Detailed litho- and biofacies investigations of the Lower–Middle Cambrian carbonate Láncara Formation resulted in its subdivision into nine lithofacies types: (1) claystone, (2) recrystallized mudstone, (3) laminated mudstone with laminoid-fenestral fabrics, (4) stromatolite, (5) laminated aggregate grainstone, (6) non-laminated aggregate grainstone, (7) oolitic-bioclastic floatstone, (8) echinodermal packstone, and (9) bioclastic grainstone. The thicknesses of lithofacies 1–7 (lower member of the Láncara Formation) decrease from south to north. Lithofacies types 8–9 (upper member of the Láncara Formation) are characterized by similar thicknesses and low facies and faunal gradients and are thus indicative of deposition on a carbonate ramp. From palaeoecological, palaeo(bio)geographical, palaeomagnetic, and tectonic considerations, the depositional environment of the Láncara Formation is re-interpreted as an eastward/north-eastward sloping, low morphology carbonate ramp. The Cantabrian Zone, with a primary lateral extension of about 300 km, is further construed to be an element of a widespread and connected, discontinuous drowned Perigondwanan depositional system.  相似文献   
9.
Summary Reefs of the Lower Silurian Chicotte Formation are the largest and most faunally diverse known on Anticosti Island, Quebec. They reach up to 25 m in thickness and 250 m in diameter and are present predominantly at two intervals, forming a lower and upper reef cluster. Remnants of bioherms are represented on the present-day wave-cut terrace as 60 to 100 m diameter, subcircular erosional depressions known as Philip structures or as outcrop. The bioherms were relatively low structures, with approximately 3 to 5 m maximum synoptic relief, some of which developed on hardgrounds and possible paleokarst surfaces of crinoidal wackestone and packstone. Dominant skeletal framework builders and sediment producers within all of the reefs are laminar to low domical stromatoporoids, colonial cerioid and fasciculate rugose corals, colonial tabulate corals, and cryptostome bryozoans. Vertical zonation of reef biota is evident within well-exposed reefs of the lower reef cluster. Three to four stages are recognizable:1) a low-diversity tabulate coral-dominatedpioneering community including large tabulate coral colonies (halysitids and favositids), and few stromatoporoids (clathrodictyids, ecclimadictyids), fasciculate rugosans, large generally monotypic stalked crinoids, and shelly benthos (brachiopods, few ostracodes and trilobites);2) an intermediate- to high-diversity, mixed tabulate coral-stromatoporoid-dominatedreef-core community;3) a slightly lower diversity stromatoporoid-tabulate coral-dominatedclimax community with laminar coenitids and alveolitids; and,4) in a few localities, a capping, low-diversity tabulatecoral-dominated (alveolitid and coenitid), and stromatoporoid-bearing community comprising laminar forms. Amelioration of Early Silurian climates, following Late Ordovician glaciation, allowed gradual reestablishment of extensive shallow-water reef growth, by mainly new and increasingly diverse genera and species of metazoans. Reef development within the Chicotte Formation coincided with global, widespread development of latest Llandovery and earliest Wenlock reefs in subtropical to tropical areas. Chicotte reefs have broad characteristics, in terms of overall biotic composition, vertical successions recognized, and paleogeographic setting, similar to those of equivalent and slightly younger age from intracratonic settings in Baltica (Gotland, Sweden and Estonia) and central and northern Laurentia (Midcontinent, U.S.A.; Hudson Bay, Canada; and North Greenland, Denmark).  相似文献   
10.
The Asmari Formation is a thick carbonate succession of the Oligo-Miocene in southwest Iran (Zagros Basin). The Zagros Basin was a continental margin attached to the eastern edge of Africa throughout the Phanerozoic. The foraminiferal limestone from the Asmari Formation has been studied to determine its microfacies, paleoenvironments and sedimentary sequences. Based on analysis of larger benthic foraminiferal assemblages and microfacies features three major depositional environments are identified. These include open marine, barrier and lagoon-lower intertidal. These three are represented by eleven microfacies. A carbonate ramp platform is suggested for the depositional environment of the Asmari Formation. The inner ramp facies are characterized by wackestone-packstone, dominated by various taxa of imperforate foraminifera. The middle ramp facies represented by packstone-grainstone to floatstone with a diverse assemblage of larger hyaline foraminifera. The outer ramp is dominated by argillaceous wackestone, characterized by planktonic foraminifera and larger hyaline foraminifera. Two third-order sequences are identified based on deepening and shallowing patterns in microfacies, staking patterns and the distribution of Oligocene-Miocene foraminifers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号