首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
  2019年   1篇
  2015年   1篇
  2014年   3篇
  2013年   8篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2008年   3篇
  2006年   1篇
  1996年   1篇
  1975年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
In this article we describe a procedure for the detection of glycoproteins on gels employing the periodic acid-Schiff’s reagent. In addition, a number of staining protocols and direct binding ELISA, employing antibodies and lectins, are described for the identification and quantitation of glycoproteins after their immobilization by dot, slot, or Western blotting onto nitrocellulose membranes. We document, in detail, the conditions (i.e., the effect of solvent and detergents) for the immobilization of one specific family of O-linked glycoproteins, namely mucins. However, taking into account our suggestions, these procedures should be applicable to other types of glycoprotein.  相似文献   
2.
Eosinophil accumulation is a characteristic feature of the immune response to parasitic worms and allergens. The cell surface carbohydrate-binding receptor Siglec-F is highly expressed on eosinophils and negatively regulates their accumulation during inflammation. Although endogenous ligands for Siglec-F have yet to be biochemically defined, binding studies using glycan arrays have implicated galactose 6-O-sulfate (Gal6S) as a partial recognition determinant for this receptor. Only two sulfotransferases are known to generate Gal6S, namely keratan sulfate galactose 6-O-sulfotransferase (KSGal6ST) and chondroitin 6-O-sulfotransferase 1 (C6ST-1). Here we use mice deficient in both KSGal6ST and C6ST-1 to determine whether these sulfotransferases are required for the generation of endogenous Siglec-F ligands. First, we characterize ligand expression on leukocyte populations and find that ligands are predominantly expressed on cell types also expressing Siglec-F, namely eosinophils, neutrophils, and alveolar macrophages. We also detect Siglec-F ligand activity in bronchoalveolar lavage fluid fractions containing polymeric secreted mucins, including MUC5B. Consistent with these observations, ligands in the lung increase dramatically during infection with the parasitic nematode, Nippostrongylus brasiliensis, which is known to induce eosinophil accumulation and mucus production. Surprisingly, Gal6S is undetectable in sialylated glycans from eosinophils and BAL fluid analyzed by mass spectrometry. Furthermore, none of the ligands we describe are diminished in mice lacking KSGal6ST and C6ST-1, indicating that neither of the known galactose 6-O-sulfotransferases is required for ligand synthesis. These results establish that ligands for Siglec-F are present on several cell types that are relevant during allergic lung inflammation and argue against the widely held view that Gal6S is critical for glycan recognition by this receptor.  相似文献   
3.
Mucin-type O-glycosylation is an important post-translational modification that confers a variety of biological properties and functions to proteins. This post-translational modification has a particularly complex and differentially regulated biosynthesis rendering prediction and control of where O-glycans are attached to proteins, and which structures are formed, difficult. Because plants are devoid of GalNAc-type O-glycosylation, we have assessed requirements for establishing human GalNAc O-glycosylation de novo in plants with the aim of developing cell systems with custom-designed O-glycosylation capacity. Transient expression of a Pseudomonas aeruginosa Glc(NAc) C4-epimerase and a human polypeptide GalNAc-transferase in leaves of Nicotiana benthamiana resulted in GalNAc O-glycosylation of co-expressed human O-glycoprotein substrates. A chimeric YFP construct containing a 3.5 tandem repeat sequence of MUC1 was glycosylated with up to three and five GalNAc residues when co-expressed with GalNAc-T2 and a combination of GalNAc-T2 and GalNAc-T4, respectively, as determined by mass spectrometry. O-Glycosylation was furthermore demonstrated on a tandem repeat of MUC16 and interferon α2b. In plants, prolines in certain classes of proteins are hydroxylated and further substituted with plant-specific O-glycosylation; unsubstituted hydroxyprolines were identified in our MUC1 construct. In summary, this study demonstrates that mammalian type O-glycosylation can be established in plants and that plants may serve as a host cell for production of recombinant O-glycoproteins with custom-designed O-glycosylation. The observed hydroxyproline modifications, however, call for additional future engineering efforts.  相似文献   
4.
Imaging living cells and organs requires innovative, specific, efficient, and well tolerated fluorescent markers targeting cellular components. Such tools will allow proceeding to the dynamic analysis of cells and the adaptation of tissues to environmental cues. In this study, we have identified and synthesized a novel non-toxic fluorescent marker allowing a specific fluorescent staining of the human colonic mucus. Our strategy to identify a molecule able to specifically bind to the human colonic mucus was on the basis of the mucus adhesion properties of commensal bacteria. We identified and characterized the mucus-binding property of a 70-amino acid domain (MUB(70)) expressed on the surface of Lactobacillus strains. The chemical synthesis of MUB(70) was achieved using the human commensal bacterium Lactobacillus reuteri AF120104 protein as a template. The synthesized Cy5-conjugated MUB(70) marker specifically stained the colonic mucus on fixed human, rabbit, and guinea pig tissues. Interestingly, murine tissue was not stained, suggesting significant differences in the composition of the murine colonic mucus. In addition, this marker stained the mucus of living cultured human colonic cells (HT29-MTX) and human colonic tissue explants. Using a biotinylated derivative of MUB(70), we demonstrated that this peptide binds specifically to Muc2, the most abundant secreted mucin, through its glycosylated moieties. Hence, Cy5-MUB(70) is a novel and specific fluorescent marker for mammalian colonic mucus. It may be used for live imaging analysis but also, as demonstrated in this study, as a marker for the diagnosis and the prognosis of colonic mucinous carcinomas.  相似文献   
5.
Characterization of mucins in the alimentary tract of the grass snake, Natrix natrix was performed by histochemical (PAS, Alcian Blue, pH 2.5 and pH 1.0, sialidase-Alcian Blue, pH 2.5, HID-AB pH 2.5) and lectin-histochemical (WGA, SWGA, PNA, sialidase-PNA, SBA, sialidase-SBA, DBA, sialidase-DBA, ConA, BSI-B4, AAA, UEA-1, LTA) techniques. Oesophageal lining epithelium consisted of ciliated and goblet cells, with no pluricellular glands. Mannosylated sialosulfomucins were observed. Fundic mucosa of stomach presented surface cells producing sialomucins with terminal sialic acid linked to galactose. In gastric glands neck and oxynticopeptic cells were found. Neck cells had sialomucins with mannose, N-acetylglucosamine, galactose, N-acetylgalactosamine and fucose-α-(1,2)-linked residues. Cytoplasm of oxynticopeptic cells showed N-acetylgalactosamine and fucose residues. Secretion of surface cells in pyloric mucosa was similar to that of fundic ones, differing in having fucose. Goblet cells in the small intestine of N. natrix produced sulfo- and sialomucins, with sialic acid linked to galactose and N-acetylgalactosamine residues. Mucins also presented residues of mannose. Goblet cells in the large intestine presented sulfomucins only, with terminal N-acetylgalactosamine, galactose and N-acetylglucosamine. The glycosylation patterns found are probably related to protection against injuries, gastric juice and microorganisms, both pathogenic and decomposers, as well as to dietary adaptations.  相似文献   
6.
Microtiter plate colorimetric assays are widely used for analysis of carbohydrates and glycoconjugates. However, mucins are often not easily detected, as they have low neutral sugar content. We have adapted and optimised the periodic acid–Schiff’s reagent (PAS) staining for microtiter plate assay by examining five factors: concentration and volume of periodic acid, oxidation time, volume of Schiff’s reagent, and color development time. This assay requires just 25 μl of sample, utilises standardised Schiff’s reagent, and has decreased assay time (140 min to completion). Seventeen monosaccharides (acidic, neutral, basic, phosphorylated, and deoxy) and four disaccharides were assessed. PAS-positive carbohydrates (amino, N-acetylamino, deoxy, and certain neutral monosaccharides, and sialic acids) responded linearly within a 10–100 nmol range approximately, which varied for each carbohydrate. The assay response for fetuin and porcine gastric mucin (PGM) was linear up to 150 μg (highest concentration tested), with no response from nonglycosylated protein. A lower response for asialofetuin was observed, but desialylated PGM preparations were similar or higher in response than their sialylated counterparts. The simplicity and low sample consumption of this method make it an excellent choice for screening or quantitation of chromatographic fractions containing carbohydrates and glycoconjugates, especially in the case of mucins.  相似文献   
7.
8.
目的:研究不同级别宫颈腺体病变组织中黏蛋白MUC2、MUC5AC、MUC6、CD10的表达情况,进而分析其与宫颈腺体病变发生发展的关系。方法:将2005年2月至2012年2月于哈尔滨医科大学附属第二医院妇产科手术切除及活检的宫颈病变患者病理组织183例,根据国际妇产科学联盟(FIGO)标准分为宫颈微腺体增生(MGH)60例;宫颈腺体不典型增生(EGD)57例;宫颈腺癌(ECA)56例,以免疫组化法检测MUC2、MUC5AC、MUC6、CD10的表达情况。结果:MUC2和CD10的阳性细胞比例随着宫颈腺体病变程度级别的增高呈上升趋势(P=0.046),而MUC5AC的表达则随着宫颈腺体病变程度级别的增高呈下降趋势(P0.001);MUC6在三种宫颈病变组织中均呈低表达,不具有显著性差异(P0.05)。结论:黏蛋白表型可以作为评估宫颈腺体病变恶性潜能的有用的标记物。  相似文献   
9.
Mucin type O-glycosylation is initiated by a large family of polypeptide GalNAc transferases (ppGalNAc Ts) that add α-GalNAc to the Ser and Thr residues of peptides. Of the 20 human isoforms, all but one are composed of two globular domains linked by a short flexible linker: a catalytic domain and a ricin-like lectin carbohydrate binding domain. Presently, the roles of the catalytic and lectin domains in peptide and glycopeptide recognition and specificity remain unclear. To systematically study the role of the lectin domain in ppGalNAc T glycopeptide substrate utilization, we have developed a series of novel random glycopeptide substrates containing a single GalNAc-O-Thr residue placed near either the N or C terminus of the glycopeptide substrate. Our results reveal that the presence and N- or C-terminal placement of the GalNAc-O-Thr can be important determinants of overall catalytic activity and specificity that differ between transferase isoforms. For example, ppGalNAc T1, T2, and T14 prefer C-terminally placed GalNAc-O-Thr, whereas ppGalNAc T3 and T6 prefer N-terminally placed GalNAc-O-Thr. Several transferase isoforms, ppGalNAc T5, T13, and T16, display equally enhanced N- or C-terminal activities relative to the nonglycosylated control peptides. This N- and/or C-terminal selectivity is presumably due to weak glycopeptide binding to the lectin domain, whose orientation relative to the catalytic domain is dynamic and isoform-dependent. Such N- or C-terminal glycopeptide selectivity provides an additional level of control or fidelity for the O-glycosylation of biologically significant sites and suggests that O-glycosylation may in some instances be exquisitely controlled.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号