首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6601篇
  免费   459篇
  国内免费   98篇
  2024年   11篇
  2023年   86篇
  2022年   122篇
  2021年   142篇
  2020年   128篇
  2019年   179篇
  2018年   144篇
  2017年   127篇
  2016年   162篇
  2015年   212篇
  2014年   325篇
  2013年   422篇
  2012年   232篇
  2011年   306篇
  2010年   294篇
  2009年   291篇
  2008年   305篇
  2007年   349篇
  2006年   307篇
  2005年   263篇
  2004年   264篇
  2003年   215篇
  2002年   160篇
  2001年   109篇
  2000年   112篇
  1999年   106篇
  1998年   112篇
  1997年   89篇
  1996年   98篇
  1995年   114篇
  1994年   87篇
  1993年   95篇
  1992年   107篇
  1991年   103篇
  1990年   78篇
  1989年   78篇
  1988年   67篇
  1987年   70篇
  1986年   49篇
  1985年   87篇
  1984年   80篇
  1983年   74篇
  1982年   94篇
  1981年   84篇
  1980年   51篇
  1979年   46篇
  1978年   31篇
  1977年   24篇
  1976年   15篇
  1972年   13篇
排序方式: 共有7158条查询结果,搜索用时 15 毫秒
1.
Summary The bovine lens capsule has previously been shown to provide an optimal surface for the examination of epithelial cell interaction with a basement membrane. This native substrate has been used to investigate some initial aspects of attachment of mouse blastocysts and trophoblastic cellular outgrowth. Mouse blastocysts were presented to the cell-free humoral side of the anterior lens capsule, incubated for 72 h, and examined by scanning and transmission electron microscopy. Blastocysts hatch and attach from their zonae pellucidae by 30 h. Trophoblastic cells proliferate rapidly in a coronal direction, display extensive surface microvilli, and advance by the extension of numerous filipodia, many of which terminate with bulbous projections. These projections were shown by transmission electron microscopy to contain numerous vacuoles and polysomes. To simulate further the initial blastocyst-uterine interaction, a suspension of lens epithelial cells was introduced to the capsule and permitted to form a monolayer prior to the addition of the blastocysts. At 72 h the monolayer of lens cells remained intact. We observed that: a) lens cells appear to recede from the advancing trophoblastic cells, and b) trophoblastic cells extend beneath the monolayer of lens cells and thereby dislodge the cells from the lens capsule substrate. No infiltration of the capsule by the advancing trophoblastic cells was observed. The lens capsule appears to offer a promising system for the study of trophoblast-epithelial cell interaction on a natural basement membrane.  相似文献   
2.
The mechanism of depletion of tricarboxylic acid cycle intermediates by isolated rat heart mitochondria was studied using hydroxymalonate (an inhibitor of malic enzymes) and mercaptopicolinate (an inhibitor of phosphoenolpyruvate carboxykinase) as tools. Hydroxymalonate inhibited the respiration rate of isolated mitochondria in state 3 by 40% when 2 mM malate was the only external substrate, but no inhibition was found with 2 mM malate plus 0.5 mM pyruvate as substrates. In the prescence od bicarbonate, arsenite and ATP, propionate was converted to pyruvate and malate at the rates of 14.0 ± 2.9 and 2.8 ± 1.8 nmol/mg protein in 5 min, respectively. Under these conditions, 0.1 mM mercaptopicolinate did not affect this conversion, but 2 mM hydroxymalonate inhibited pyruvate formation completely and resulted in an accumulation of malate up to 13.2 ± 2.9 nmol/mg protein. No accumulation of phosphoenolpyruvate was found under any condition tested. It is concluded that malic enzymes but not phosphoenolpyruvate carboxykinase, are involved in conversion of propionate to pyruvate in isolated rat heart mitochondria.  相似文献   
3.
4.
大鼠脊髓蛛网膜下腔注射α激动剂可乐宁1μg,引起血压降低、心率减慢及腹腔神经节后交感神经干放电抑制。应用α阻断剂酚妥拉明阻断脊髓内源性 NE的作用,可部分抑制血压升高时反射性的心率减慢和交感神经放电抑制反应,使压力感受器反射的敏感性降低。在颈动脉放血造成不可逆性失血性休克的动物,脊髓蛛网膜下腔注射酚妥拉明可使动脉血压有一定程度的回升。以上结果表明,由脊髓α受体调制的心血管抑制效应参与减压反射以及失血性休克的发病机制。  相似文献   
5.
6.
In this work we describe a non‐invasive and precise technique to record the heartbeats of a spider. A linear output Hall effect transducer in conjunction with a small magnet was used to monitor the micromovements on the dorsal surface of the abdomen of the tarantula Aphonopelma hentzi (Girard) (Theraphosidae). The exoskeleton in this region is in direct contact with suspensory ligaments connected to the heart, and the dorsal cuticle of the opisthosoma moves with each heartbeat. The technique allowed the discrimination of the different stages of the spider's cardiac cycle. The method can be also adapted for a smaller spider or other arthropods. We believe that the method proposed in this paper allows investigators to gain insights into a spider's natural heart rate by gathering unbiased data with a non‐invasive and very precise technique. We have found the resting heart rate of A. hentzi to be 5.6 ± 1.47 beats/min, which is lower than previously reported values.  相似文献   
7.
Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies.  相似文献   
8.
Thanks to the numerous studies that have been carried out recently in the field of cytosolic DNA sensing, STING (Stimulator of Interferon Genes) is now recognized as a key mediator of innate immune signaling. A substantial body of evidence derived from in vivo mouse models demonstrates that STING-regulated pathways underlie the pathogenesis of many diseases including infectious diseases and cancers. It has also become evident from these studies that STING is a promising therapeutic target for the treatment of cancer. However, mouse strains commonly used for modelling innate immune response against infections or tumors do not allow investigators to accurately reproduce certain specific characteristics of immune response observed in human cells. In this review, we will discuss recent data demonstrating that the use of wild-derived genetically distinct inbred mice as a model for investigation into the innate immunity signaling networks may provide valuable insight into the STING-regulated pathways specific for human cells. The maximum complexity of STING-mediated mechanisms can probably be seen in case of DNA virus-induced carcinogenesis in which STING may perform unexpected biological activities. Therefore, in another part of this review we will summarize emerging data on the role of STING in human DNA virus-related oncopathologies, with particular attention to HPV-associated cervical cancer, aiming to demonstrate that STING indeed “starts a new chapter” in research on this issue and that wild-derived mouse models of STING-mediated response to infections will probably be helpful in finding out molecular basis for clinical observations.  相似文献   
9.
Aneugenic compounds act on non-DNA targets to exert genotoxicity via an indirect mechanism. In contrast to DNA-binding agents, these compounds are expected to possess threshold levels of activity. Therefore, the risk for adverse effects following human exposure to an aneugen could be minimal, if the threshold of activity has been clearly determined in vivo and in vitro and providing the human exposure level is below this threshold. Thus, the development of a single-cell model to allow comparisons between in vitro and in vivo threshold values for aneugenic compounds is of importance.The in vivo micronucleus test is one of the main assays used in genetic toxicology, and is often performed in the mouse. Thus, an extensive database is available in the literature. However, there are only few data concerning the in vitro micronucleus assay using mouse cells, as the majority of in vitro micronucleus assays have been performed using human lymphocytes. In addition, there is a lack of data concerning thresholds for any compound using this model.First, we evaluated whether the use of mouse splenocytes would be an acceptable alternative to that of human lymphocytes to identify aneugens. To allow valid comparisons, the two protocols were first harmonized. Thus, phytohemagglutinin (PHA) and concanavalin A were used as specific mitogens for human lymphocytes and mouse splenocytes, respectively, in order to achieve similar cell-proliferation rates. To achieve similar and sufficient numbers of binucleated cells, cytochalasin B was added 44 and 56 h after culture initiation of the human and mouse cells, respectively.Second, we compared the sensitivity of the mouse protocol with that of the human protocol by exposing the cells to the aneugens nocodazole and paclitaxel.There was good reproducibility of the cytotoxic/genotoxic responses of the two cell models following exposure to the aneugens. The sensitivity of the mouse splenocytes to paclitaxel was higher than that of the human lymphocytes. The two cell types were equally sensitive to nocodazole.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号