首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   25篇
  国内免费   2篇
  2023年   14篇
  2022年   19篇
  2021年   20篇
  2020年   23篇
  2019年   14篇
  2018年   10篇
  2017年   13篇
  2016年   20篇
  2015年   9篇
  2014年   36篇
  2013年   72篇
  2012年   12篇
  2011年   21篇
  2010年   12篇
  2009年   32篇
  2008年   36篇
  2007年   25篇
  2006年   28篇
  2005年   27篇
  2004年   24篇
  2003年   8篇
  2002年   13篇
  2001年   12篇
  2000年   13篇
  1999年   19篇
  1998年   19篇
  1997年   12篇
  1996年   16篇
  1995年   8篇
  1994年   13篇
  1993年   12篇
  1992年   6篇
  1991年   10篇
  1990年   4篇
  1989年   6篇
  1987年   2篇
  1986年   1篇
  1985年   6篇
  1984年   1篇
  1983年   5篇
  1982年   2篇
  1981年   7篇
  1980年   7篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1969年   1篇
排序方式: 共有682条查询结果,搜索用时 15 毫秒
1.
Muscular sound and force relationship during isometric contraction in man   总被引:3,自引:0,他引:3  
The contracting muscle generates a low frequency sound detectable at the belly surface, ranging from 11 to 40 Hz. To study the relationship between the muscular sound and the intensity of the contraction a sound myogram (SMG) was recorded by a contact sensor from the biceps brachii of seven young healthy males performing 4-s isometric contractions from 10% to 100% of the maximal voluntary contraction (MVC), in 10% steps. Simultaneously, the electromyogram (EMG) was recorded as an index of muscle activity. SMG and EMG were integrated by conventional methods (iSMG and iEMG). The relationship between iSMG and iEMG vs MVC% is described by parabolic functions up to 80% and 100% MVC respectively. Beyond 80% MVC the iSMG decreases, being about half of its maximal value at 100% MVC. Our results indicate that the motor unit recruitment and firing rate affect the iSMG and iEMG in the same way up to 80% MVC. From 80% to 100% MVC the high motor units' discharge rate and the muscular stiffness together limit the pressure waves generated by the dimensional changes of the active fibres. The muscular sound seems to reflect the intramuscular visco-elastic characteristics and the motor unit activation pattern of a contracting muscle.  相似文献   
2.
Summary In tethered flying houseflies (Musca domestica), the yaw torque produced by the wings is accompanied by postural changes of the abdomen and hindlegs. In free flight, these body movements would jointly lead to turning manoeuvres of the animal. By recording the yaw torque together with the lateral deflections of either the abdomen or the hindlegs, it is shown that these motor output systems act in a highly synergistic way during two types of visual orientation behavior, compensatory optomotor turning reactions and orientation turns elicited by moving objects. This high degree of coordination is particularly conspicuous for the pathway activated by moving objects. Here, orientation responses either may be induced or may fail to be generated always simultaneously in all three motor output systems. This suggests that the pathway mediating orientation turns towards objects is gated before it segregates into the respective motor control systems of the wings, the abdomen and the hindlegs.  相似文献   
3.
The circadian movement of the lamina of primary leaves of Phaseolus coccineus L. is mediated by antagonistic changes in the length of the extensor and flexor cells of the laminar pulvinus. The cortex of the pulvinus is a concentric structure composed of hexagonal disc-like cells, arranged in longitudinal rows around the central stele. Observations with polarization optics indicate that the cellulose microfibrils are oriented in a hoop-like fashion in the longitudinal walls of the motor cells. This micellation is the structural basis of the anisotropic properties of the cells: tangential sections of the extensor and flexor placed in hypotonic mannitol solutions showed changes only in length. As a consequence a linear correlation between length and volume was found in these sections. Based on the relationship between the water potential (which is changed by different concentrations of mannitol) and the relative volume of the sections and on the osmotic pressure at 50% incipient plasmolysis, osmotic diagrams were constructed for extensor and flexor tissues (cut during night position of the pulvinus). The bulk moduli of extensibility, , were estimated from these diagrams. Under physiological conditions the values were rather low (in extensor tissue below 10 bar, in flexor tissue between 10 to 15 bar), indicating a high extensibility of the longitudinal walls of the motor cells. They are strongly dependent on the turgor pressure at the limits of the physiological pressure range.In well-watered plants, the water potentials of the extensor and flexor tissues were surprisingly low,-12 bar and-8 bar, respectively. This means that the cells in situ are by no means fully turgid. On the contrary, the cell volume in situ is similar to the volume at the point of incipient plasmolysis: the cell volumes of extensor and flexor cells in situ were only 1.01 times and 1.1 times larger, respectively, than at the point of incipient plasmolysis, whereas at full turgidity (cells in water) the corresponding factors were 1.8 and 1.5. It is suggested that the high elasticity of the longitudinal walls, the anisotropy of the cell walls, and the low water potential of the sections which is correlated with slightly stretched cell walls in situ, are favourable and effective for converting osmotic work in changes in length of the pulvinus cells, and thus for the up and down movement of the leaf.Symbols volumetric elastic modulus - i instantaneous volumetric elastic modulus - i stationary volumetric elastic modulus - weight-averaged stationary bulk modulus of extensibility - 0 osmotic pressure of the vacuole of a cell at the point of incipient plasmolysis - weight-averaged osmotic pressure of the vacuoles of the tissue at 50% incipient plasmolysis - water potential  相似文献   
4.
Summary The frog motor endplate in its simplest form consists of an elongated, slender nerve ending embedded in a gutter-like depression of the sarcolemma. This nerve terminal contains the usual synaptic organelles. It is covered by a thin coating of Schwann cell cytoplasm which embraces the terminal with thin finger-like processes from both sides, thereby sub-dividing it into 300–1000 regularly spaced compartments. The individual synaptic compartments correspond to the strings of varicosities or grape-like configurations of motor nerve terminals in endplates of other species and in the cerebral neuropil of vertebrates.Each compartment contains one or more bar-like densities of the presynaptic membrane, active zones, which are associated with the attachment sites between synaptic vesicles and plasmalemma. Active zones have a regular transverse arrangement and occur at specific loci opposite the junctional folds. The attachment sites for synaptic vesicles are at the edges of the bars which are bilaterally delineated by a double row of 10 nm particles attached to the A-face. The structural appearance of vesicle attachment sites in freeze-etch replicas corresponds to that of micropinocytosis. The active zones are often fragmented and the frequency of their association with vesicle attachment sites is highly variable.The junctional folds are characterized by specific sites in which intramembranous particle aggregations occur at relatively high packing density (7500/m2). These sites are located opposite the active zones at the juxtaneural lips, a location where one would expect ACh-sensitive receptors on the postsynaptic membrane.This work was supported by the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 38, Projekt N), The Swiss National Foundation for Scientific Research (Grants Nr. 3 82372 and 3 77472) and the Dr. Eric Slack-Gyr Foundation Zürich.  相似文献   
5.
Prosaposin Facilitates Sciatic Nerve Regeneration In Vivo   总被引:3,自引:0,他引:3  
Abstract: Prosaposin, a multifunctional protein, is the precursor of saposins, which activate sphingolipid hydrolases. In addition to acting as a precursor for saposins, prosaposin has been shown to rescue hippocampal CA1 neurons from lethal ischemic damage in vivo and to promote neurite extension of neuroblastoma cells in vitro. Here we show that prosaposin, when added to a collagen-filled nerve guide after sciatic nerve transection in guinea pigs, increased dramatically the number of regenerating nerve fibers within the guide. To identify the target neurons of prosaposin during peripheral nerve regeneration, we determined the degree of atrophy and chromatolysis of neurons in the spinal anterior horn and dorsal root ganglia on the prosaposin-treated and untreated side. The effect of prosaposin on large spinal neurons and small neurons of the dorsal root ganglion was more conspicuous. Subsequent immunohistochemistry demonstrated that the atrophy of cholinergic large neurons in the anterior horn is prevented to significant extent by prosaposin treatment. These findings suggest that prosaposin promotes peripheral nerve regeneration by acting on α-motor neurons in the anterior horn and on small sensory neurons in the dorsal root ganglion. The present study raises the possibility of using prosaposin as a tool for the treatment of peripheral nerve injuries.  相似文献   
6.
Strain acting on the exoskeleton of insects is monitored by campaniform sensilla. On the tibia of a mesothoracic leg of the locust (Schistocerca gregaria) there are three groups of campaniform sensilla on the proximo-dorsal surface. This study analyses the responses of the afferents from one group, their connections with central neurones and their actions during walking.The afferents of the campaniform sensilla make direct excitatory connections with flexor tibiae motor neurones. They also make direct connections with particular spiking local interneurones that make direct inhibitory output connections with the slow extensor tibiae motor neurone.During walking extension movements of the tibiae during stance produce longitudinal tensile forces on the dorsal tibia that peak during mid stance before returning to zero prior to swing. This decline in tension can activate the campaniform sensilla. In turn this would lead to an inhibition of the extensor tibiae motor neurone and an excitation of the flexor tibiae motor neurones. This, therefore, aids the transition from stance to swing. During turning movements, the tibia is flexed and the dorsal surface is put under compression. This can also activate some of campaniform sensilla whose effect on the flexor motor neurones will reinforce the flexion of the tibia.  相似文献   
7.
Phosphorylation of Neuronal Kinesin Heavy and Light Chains In Vivo   总被引:9,自引:0,他引:9  
Abstract: The microtubule-based motor protein kinesin is thought to drive anterograde organelle transport in axons, but nothing is known about how its force-generating activity or organelle-binding properties are regulated. Studies in other motility systems suggest that protein phosphorylation is a reasonable candidate for this function. I report here that the kinesin heavy chain (HC) and light chain (LC), as well as the 160-kDa kinesin-associated protein kinectin, are phosphorylated in vivo in cultures of chick sympathetic neurons and PC12 cells labeled metabolically with 32P. In neurons, both kinesin chains are phosphorylated exclusively on serine residues, and limiting tryptic digestion demonstrated that the phosphorylation sites are clustered in a region of ˜5 kDa for the HC and ˜14 kDa for the LC. Partial tryptic digestion of 32P-labeled HC followed by immunoblotting with SUK4 monoclonal anti-HC and fluorography showed that the sites of HC phosphorylation are outside the globular N-terminal head region where kinesin's microtubulebinding and mechanochemical activities reside. Treatment of metabolically labeled neurons with forskolin, phorbol esters, or calcium ionophore did not alter the extent of phosphorylation, the phosphoamino acid composition, or the V8 protease phosphopeptide maps of the HC, LC, and 160-kDa protein, with one exception: treatment with calcium ionophore reduced the specific activity of the LC. In addition, when kinesin from PC12 cells was compared with that from PC12-derived cell lines lacking protein kinase A activity, neither the extent of phosphorylation nor the phosphopeptide maps were altered for either chain. Phosphopeptide mapping experiments also showed that postlysis kinase activity can phosphorylate both the neuronal HC and LC at sites not phosphorylated in vivo.  相似文献   
8.
Abstract: Velocity sedimentation analysis of acetylcholinesterase (AChE) molecular forms in the fast extensor digitorum longus muscle and in the slow soleus muscle of the rat was carried out on days 4, 8, and 14 after induction of muscle paralysis by botulinum toxin type A (BoTx). The results were compared with those observed after muscle denervation. In addition, the ability of BoTx-paralyzed muscles to resynthesize AChE was studied after irreversible inhibition of the preexistent enzyme by diisopropyl phosphorofluoridate. Major differences were observed between the effects of BoTx treatment and nerve section on AChE in the junctional region of the muscles. A precipitous drop in content of the asymmetric A12 AChE form was observed after denervation, whereas its decrease was much slower and less extensive in the BoTx-paralyzed muscles. Recovery of junctional AChE and of its A12 form after irreversible inhibition of the preexistent AChE in BoTx-paralyzed muscles was nevertheless very slow. It seems that a greater part of the junctional A12 AChE form pertains to a fraction with a very slow turnover that is rapidly degraded after denervation but not after BoTx-produced muscle paralysis. The postdenervation decrease in content of junctional A12 AChE is therefore not primarily due to muscle inactivity. The extrajunctional molecular forms of AChE seem to be regulated mostly by muscle activity because they undergo virtually identical changes both after denervation and BoTx paralysis. The differences observed in this respect between the fast and slow muscles after their inactivation must be intrinsic to muscles.  相似文献   
9.
10.
The purpose of this study was to determine if differences exist between the control strategies of two antagonist thigh muscles during knee flexion and extension muscular coactivation. Surface myoelectric signal (MES) of the quadriceps (rectus femoris) and the hamstrings (semitendinosus) were obtained from both muscles while performing step-wise increasing contractions during flexion and extension with the knee at 1.57 rad of flexion (90 degrees). The median frequency of the power density spectrum, which is related to the average muscle fiber action potential conduction velocity and therefore to motor unit recruitment, was calculated from each MES. The results suggest that, in all the subjects tested, when the muscle acts as antagonist most motor units are recruited up to 50% of the maximal voluntary force, whereas when the muscle acts as antagonist motor units are recruited up to 40% of the maximal voluntary force. The force range past 40–50% of the maximal force is also characterized by differences between the agonist/antagonist.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号