首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
  国内免费   3篇
  2022年   1篇
  2016年   2篇
  2014年   1篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1981年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
1.
The evolutionary position of the yew family, Taxaceae, has been very controversial. Some plant taxonomists strongly advocate excluding Taxaceae from the conifer order and raising its taxonomic status to a new order or even class because of its absence of seed cones, contrary to the case in the majority of conifers. However, other authors believe that the Taxaceae are not fundamentally different from the rest of the conifers except in that they possess the most reduced solitary-ovule cones. To resolve the controversy, we have sequenced the 18S rRNA genes from representative gymnosperms: Taxus mairei (Taxaceae), Podocarpus nakaii (Podocarpaceae), Pinus luchuensis (Pinaceae), and Ginkgo biloba (Ginkgoales). Our phylogenetic analysis of the new sequence data with the published 18S rRNA sequence of Zamia pumila (a cycad) as an outgroup strongly indicates that Taxus, Pinus, and Podocarpus form a monophyletic group with the exclusion of Ginkgo and that Taxus is more closely related to Pinus than to Podocarpus. Therefore, Taxaceae should be classified as a family of Coniferales. Our finding that Taxaceae, Pinaceae, and Podocarpaceae form a clade contradicts both the view that the uniovulate seed of Taxaceae is a primitive character and the view that the Taxaceae are descendants of the Podocarpaceae. Rather, the uniovulate seed of Taxaceae and that of some species of Podocarpus appear to have different origins, probably all reduced from multiovulate cones. Correspondence to: W.-H. Li  相似文献   
2.
Thirty-two partial phytochrome sequences from algae, mosses, ferns, gymnosperms, and angiosperms (11 of them newly released ones from our laboratory) were analyzed by distance and characterstate approaches (PHYLIP, TREECON, PAUP). In addition, 12 full-length sequences were analyzed. Despite low bootstrap values at individual internal nodes, the inferred trees (neighbor joining, Fitch, maximum parsimony) generally showed similar branching orders consistent with other molecular data. Lower plants formed two distinct groups. One basal group consisted of Selaginella, Equisetum, and mosses; the other consisted of a monophyletic cluster of frond-bearing pteridophytes. Psilotum was a member of the latter group and hence perhaps was not, as sometimes suggested, a close relative of the first vascular plants. The results further suggest that phytochrome gene duplication giving rise to a- and b- and later to c-types may have taken place within seedfern genomes. Distance matrices dated the separation of mono- and dicotyledons back to about 260 million years before the present (Myr b.p.) and the separation of Metasequoia and Picea to a fossil record-compatible value of 230 Myr B.P. The Ephedra sequence clustered with the c- or a-type and Metasequoia and Picea sequences clustered with the b-type lineage. The paleoherb Nymphaea branched off from the c-type lineage prior to the divergence of mono- and dicotyledons on the a- and b-type branches. Sequences of Piper (another paleoherb) created problems in that they branched off from different phytochrome lineages at nodes contradicting distance from the inferred trees' origin. Correspondence to: H.A.W. Schneider-Poetsch  相似文献   
3.
Summary Actin genic regions were isolated and characterized from the heterokont-flagellated protists,Achlya bisexualis (Oomycota) andCostaria costata (Chromophyta). Restriction enzyme and cloning experiments suggested that the genes are present in a single copy and sequence determinations revealed the existence of two introns in theC. costata actin genic region. Phylogenetic analyses of actin genic regions using distance matrix and maximum parsimony methods confirmed the close evolutionary relationship ofA. bisexualis andC. costata suggested by ribosomal DNA (rDNA) sequence comparisons and reproductive cell ultrastructure. The higher fungi, green plants, and animals were seen as monophyletic groups; however, a precise order of branching for these assemblages could not be determined. Phylogenetic frameworks inferred from comparisons of rRNAs were used to assess rates of evolution in actin genic regions of diverse eukaryotes. Actin genic regions had nonuniform rates of nucleotide substitution in different lineages. Comparison of rates of actin and rDNA sequence divergence indicated that actin genic regions evolve 2.0 and 5.3 times faster in higher fungi and flowering plants, respectively, than their rDNA sequences. Conversely, animal actins evolve at approximately one-fifth the rate of their rDNA sequences.  相似文献   
4.
GlyptothoraxBlyth (1860) is the most species-diverse and widely-distributed genus in the Sisoridae, but few studies have examined monophyly of the genus and phylogenetic relations within it. We used the nuclear RAG2 gene and mitochondrial COI and Cyt b genes from 50 of the approximately 70 species to examine monophyly of Glyptothorax and phylogenetic relationships within the genus. Molecular phylogenetic trees were constructed using maximum parsimony, maximum likelihood and Bayesian inference methods. All methods strongly supported monophyly of Glyptothorax, with Bagarius as its sister group. Both analyses of two- and three-gene datasets recovered nine major subclades of Glyptothorax, but some internal nodes remained poorly resolved. The phylogenetic relationships within the genus and existing taxonomic problems are discussed.  相似文献   
5.
在中国学者夏凯龄的分类系统中,剑角蝗科Acrididae一直被看作是单系群,包含6个亚科。但是,近年来的研究对其单系性争议较大。为探讨其单系性和剑角蝗属等6属的系统发育关系,我们测定了剑角蝗科14种蝗虫的16S rRNA基因部分序列,并从GenBank中下载了1种蝗虫的同源序列。以蚱科的2个种作外群,用NJ、MP及ML法重建系统发生树。由三棵分子系统树中得出的系统发生关系与中国的分类系统差别较大,都不支持剑角蝗科是单系群,但与国外Kevan的系统相一致,提示我们国内的分类系统亟待修改和完善。长腹蝗亚科与斑腿蝗科的亲缘关系要近于与剑角蝗科的其他种类的关系。另外,尽管所测的红足剑角蝗和上海剑角蝗的16S rDNA的片段序列完全相同,我们仍不能断定二者是同一个物种[动物学报52 (2) : 302 -308 , 2006]。  相似文献   
6.
The biological species (biospecies) concept applies only to sexually reproducing species, which means that until sexual reproduction evolved, there were no biospecies. On the universal tree of life, biospecies concepts therefore apply only to a relatively small number of clades, notably plants andanimals. I argue that it is useful to treat the various ways of being a species (species modes) as traits of clades. By extension from biospecies to the other concepts intended to capture the natural realities of what keeps taxa distinct, we can treat other modes as traits also, and so come to understand that theplurality of species concepts reflects the biological realities of monophyletic groups.We should expect that specialists in different organisms will tend to favour those concepts that best represent the intrinsic mechanisms that keep taxa distinct in their clades. I will address the question whether modes ofreproduction such as asexual and sexual reproduction are natural classes, given that they are paraphyletic in most clades.  相似文献   
7.
Using plate tectonic theory, geologic and geophysical determinants of South Atlantic opening are assessed during the Cretaceous through the Oligocene (approximately 135–25 m.y.B.P.). This is done to evalute the feasibility of statements on paleontologic and neontologic distributional data that relate to African and South American separation as the South Atlantic was created. In particular, the question of anthropoid origins is examined in light of plate tectonic theory, and the idea that monophyly of the anthropoid grade is supported by continental drift is refuted. When geological and geophysical evidence is examined in detail, the occurrence of Tertiary transfer of primates between Africa and South America is improbable. Thus one must look to either North America or Middle America for the ancestors of the platyrrhines, and to Eurasia for the ancestors of the catarrhines. The problem of whether those ancestors were prosimians or anthropoids is not dealt with, because the question of whether the Platyrrhini and the Catarrhini are independently evolved from prosimian ancestors (anthropoid diphyly) or are evolved from ancestors that were already of an anthropoid level of structural organization (anthropoid monophyly) can only be resolved on biological grounds and at a level of analysis that allows one to distinguish between analogies developed in parallel, homologies caused by symple-siomorphy, and homologies caused by synapomorphy.  相似文献   
8.
9.
A natural starting place for developing a phylogenetic species concept is to examine monophyletic groups of organisms. Proponents of “the” Phylogenetic Species Concept fall into one of two camps. The first camp denies that species even could be monophyletic and groups organisms using character traits. The second groups organisms using common ancestry and requires that species must be monophyletic. I argue that neither view is entirely correct. While monophyletic groups of organisms exist, they should not be equated with species. Instead, species must meet the more restrictive criterion of being genealogically exclusive groups where the members are more closely related to each other than to anything outside the group. I carefully spell out different versions of what this might mean and arrive at a working definition of exclusivity that forms groups that can function within phylogenetic theory. I conclude by arguing that while a phylogenetic species concept must use exclusivity as a grouping criterion, a variety of ranking criteria are consistent with the requirement that species can be placed on phylogenetic trees.
Joel D. VelascoEmail:
  相似文献   
10.
Taxa and homologues can in our view be construed both as kinds and as individuals. However, the conceptualization of taxa as natural kinds in the sense of homeostatic property cluster kinds has been criticized by some systematists, as it seems that even such kinds cannot evolve due to their being homeostatic. We reply by arguing that the treatment of transformational and taxic homologies, respectively, as dynamic and static aspects of the same homeostatic property cluster kind represents a good perspective for supporting the conceptualization of taxa as kinds. The focus on a phenomenon of homology based on causal processes (e.g., connectivity, activity-function, genetics, inheritance, and modularity) and implying relationship with modification yields a notion of natural kinds conforming to the phylogenetic-evolutionary framework. Nevertheless, homeostatic property cluster kinds in taxonomic and evolutionary practice must be rooted in the primacy of epistemological classification (homology as observational properties) over metaphysical generalization (series of transformation and common ancestry as unobservational processes). The perspective of individuating characters exclusively by historical-transformational independence instead of their developmental, structural, and functional independence fails to yield a sufficient practical interplay between theory and observation. Purely ontological and ostensional perspectives in evolution and phylogeny (e.g., an ideographic character concept and PhyloCode’s ‘individualism’ of clades) may be pragmatically contested in the case of urgent issues in biodiversity research, conservation, and systematics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号