首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2011年   1篇
  2007年   4篇
  2006年   3篇
  1999年   2篇
  1995年   1篇
  1983年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
In this work, models of the homotetrameric C2 component of the monooxygenase p‐hydroxyphenylacetate hydroxylase from Acinetobacter baumannii, in complex with dioxygen (O2) and, or not, the substrate p‐hydroxyphenylacetate (HPA) were built. Both models proved to be amenable to random‐acceleration molecular dynamics (RAMD) simulations, whereby a tiny randomly oriented external force, acting on O2 at the active site in front of flavin mononucleotide (FMNH?), accelerated displacement of O2 toward the bulk solvent. This allowed us to carry out a sufficiently large number of RAMD simulations to be of statistical significance. The two systems behaved very similarly under RAMD, except for O2 leaving the active site more easily in the absence of HPA, but then finding similar obstacles in getting to the gate as when the active site was sheltered by HPA. This challenges previous conclusions that HPA can only reach the active center after that the C4aOOH derivative of FMNH? is formed, requiring uptake of O2 at the active site before HPA. According to these RAMD simulations, O2 could well get to FMNH? also in the presence of the substrate at the active site.  相似文献   
2.
3.
It has been reported that malaria infection impairs hepatic drug clearance and causes a down-regulation of CYP-mediated monooxygenase activities in rodents and humans. In the present study, we investigated the effects of Plasmodium berghei infection on the activity of liver monooxygenases in female DBA/2 and C57BL/6 mice. In both mouse strains, P. berghei infection decreased activities mediated by CYP1A (EROD: DBA/2 65.3%, C57BL/6 44.7%) and 2B (BROD: DBA/2 64.3%, C57BL/6 49.8%) subfamily isoforms and increased activities mediated by 2A5 (COH: DBA/2 182.4%, C57BL/6 148.5%) and 2E1 (PNPH: DBA/2 177.8%, C57BL/6 128.5%) isoforms as compared to non-infected controls. Since malaria infection also produced an increase in ALT (273.1%) and AST (354.1%) activities in the blood serum, our findings are consistent with the view that CYP2A5 activity is induced by liver injury. An almost generalized depression of CYP-mediated activities has been found with numerous infections and inflammatory stimuli but an induction of CYP2A5 had been previously noted only in some viral hepatitis and trematode (liver fluke) infections.  相似文献   
4.
The release of methyl tert-butyl ether (MTBE) to the environment, mainly from damaged gasoline underground storage tanks or distribution systems spills, has provoked extended groundwater pollution. Biological treatments are, in general, a good alternative for bioremediation of polluted sites; however, MTBE elimination from environment has constituted a challenge because of its chemical structure and physicochemical properties. The combination of a stable ether link and the branched moiety hinder biodegradation. Initial studies found MTBE to be highly recalcitrant but, in the last decade, reports of its biodegradation have been published first under aerobic conditions and just recently under anaerobic conditions. Microbial MTBE degradation is characterized by bacteria having low growth rates (0.35 day−1) and biomass yields (average value 0.24 g biomass/g MTBE). Alternatively, cometabolism (defined as the transformation of a non-growth substrate in the obligate presence of a growth substrate), has been considered since it uncouples biodegradation of the contaminant from growth, reducing the long adaptation and propagation period. This period has been reported to be of several months in systems where it is degraded as sole carbon source. Cometabolic degradation rates are between 0.3 and 61 nmol/min/mg protein (in the same range of direct aerobic metabolism). However, a major concern in MTBE cometabolism is that the accumulation of tert-butyl alcohol (TBA) may, under certain cases, result in an incomplete site cleanup. This paper reviews in detail the implicated enzymes and field treatments for the cometabolism of MTBE degradation with alkanes as growth substrates.  相似文献   
5.
Direct and selective terminal oxidation of medium-chain n-alkanes is a major challenge in chemistry. Efforts to achieve this have so far resulted in low specificity and overoxidized products. Biocatalytic oxidation of medium-chain n-alkanes – with for example the alkane monooxygenase AlkB from P. putida GPo1- on the other hand is highly selective. However, it also results in overoxidation. Moreover, diterminal oxidation of medium-chain n-alkanes is inefficient. Hence, α,ω-bifunctional monomers are mostly produced from olefins using energy intensive, multi-step processes.By combining biocatalytic oxidation with esterification we drastically increased diterminal oxidation upto 92 mol% and reduced overoxidation to 3% for n-hexane. This methodology allowed us to convert medium-chain n-alkanes into α,ω-diacetoxyalkanes and esterified α,ω-dicarboxylic acids. We achieved this in a one-pot reaction with resting-cell suspensions of genetically engineered Escherichia coli.The combination of terminal oxidation and esterification constitutes a versatile toolbox to produce α,ω-bifunctional monomers from n-alkanes.  相似文献   
6.
Several bacteria from soil and rainwater samples were enriched and isolated with propanesulfonate or butanesulfonate as sole carbon and energy source. Most of the strains isolated utilized nonsubstituted alkanesulfonates with a chain length of C3–C6 and the substituted sulfonates taurine and isethionate as carbon and energy source. A gram-positive isolate, P40, and a gram-negative isolate, P53, were characterized in more detail. Phylogenetic analysis grouped strain P40 within group IV of the genus Rhodococcus and showed a close relationship with Rhodococcus opacus. After phylogenetic and physiological analyses, strain P53 was identified as Comamonas acidovorans. Both bacteria also utilized a wide range of sulfonates as sulfur source. Strain P40, but not strain P53, released sulfite into the medium during dissimilation of sulfonated compounds. Cell-free extracts of strain P53 exhibited high sulfite oxidase activity [2.34 U (mg protein)–1] when assayed with ferricyanide, but not with cytochrome c. Experiments with whole-cell suspensions of both strains showed that the ability to dissimilate 1-propanesulfonate was specifically induced during growth on this substrate and was not present in cells grown on propanol, isethionate or taurine. Whole-cell suspensions of both strains accumulated acetone when oxidizing the non-growth substrate 2-propanesulfonate. Strain P40 cells also accumulated sulfite under these conditions. Stoichiometric measurements with 2-propanesulfonate as substrate in oxygen electrode experiments indicate that the nonsubstituted alkanesulfonates were degraded by a monooxygenase. When strain P53 grew with nonsubstituted alkanesulfonates as carbon and energy source, cells expressed high amounts of yellow pigments, supporting the proposition that an oxygenase containing iron sulfur centres or flavins was involved in their degradation. Received: 21 December 1998 / Accepted: 18 March 1999  相似文献   
7.
The Escherichia coli (E. coli) overexpression systems of Baeyer–Villiger monooxygenases (BVMOs), cyclohexanone monooxygenase (CHMO) and cyclopentanone monooxygenase (CPMO) and their mutants derived from directed evolution were used as catalysts in oxidations of six 4-substituted cyclohexanones. The biotransformations were carried out with growing cells (standard screening conditions) and with non-growing cells. The surprising result is that several substrates that give negative results (non-acceptance) under the screening conditions, afford excellent conversions in the transformations under non-growing conditions. The new bioreagents for Baeyer–Villiger oxidations with divergent, high enantioselectivities reported here can be used in scaled-up fermentation under non-growing conditions.  相似文献   
8.
The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is the precursor of the signal molecule autoinducer-2 (AI-2). AI-2 mediates interspecies communication and facilitates regulation of bacterial behaviors such as biofilm formation and virulence. A variety of bacterial species have the ability to sequester and process the AI-2 present in their environment, thereby interfering with the cell-cell communication of other bacteria. This process involves the AI-2-regulated lsr operon, comprised of the Lsr transport system that facilitates uptake of the signal, a kinase that phosphorylates the signal to phospho-DPD (P-DPD), and enzymes (like LsrG) that are responsible for processing the phosphorylated signal. Because P-DPD is the intracellular inducer of the lsr operon, enzymes involved in P-DPD processing impact the levels of Lsr expression. Here we show that LsrG catalyzes isomerization of P-DPD into 3,4,4-trihydroxy-2-pentanone-5-phosphate. We present the crystal structure of LsrG, identify potential catalytic residues, and determine which of these residues affects P-DPD processing in vivo and in vitro. We also show that an lsrG deletion mutant accumulates at least 10 times more P-DPD than wild type cells. Consistent with this result, we find that the lsrG mutant has increased expression of the lsr operon and an altered profile of AI-2 accumulation and removal. Understanding of the biochemical mechanisms employed by bacteria to quench signaling of other species can be of great utility in the development of therapies to control bacterial behavior.  相似文献   
9.
Four (CYP195A2, CYP199A2, CYP203A1, and CYP153A5) of the seven P450 enzymes, and palustrisredoxin A, a ferredoxin associated with CYP199A2, from the metabolically diverse bacterium Rhodopseudomonas palustris have been expressed and purified. A range of substituted benzenes, phenols, benzaldehydes, and benzoic acids was shown to bind to the four P450 enzymes. Monooxygenase activity of CYP199A2 was reconstituted with palustrisredoxin A and putidaredoxin reductase of the P450cam system from Pseudomonas putida. We found that 4-ethylbenzoate and 4-methoxybenzoate were oxidized to single products, and 4-methoxybenzoate was demethylated to form 4-hydroxybenzoate. Crystals of substrate-free CYP199A2 which diffracted to approximately 2.0A have been obtained.  相似文献   
10.
Two saturated (4a,b) and one unsaturated (5) bicyclic γ-lactones containing a dimethylcyclohexane ring were subjected to biotransformation using the fungal strain Absidia cylindrospora. Six new compounds (6–11) and one known (12) [K.W. Rosenmund, H. Herzberg, H. Schutt, Chem. Ber. 87 (1954) 1258] [2] were isolated. All substrates were stereoselectively hydroxylated by the microorganism at either the C-4 (in the case of 4a and 5) or C-2 position (in case of 4a and 4b) giving the corresponding hydroxylactones with tertiary (6 and 9) or secondary (8 and 10) hydroxy groups, respectively.

The hydroxy group was also introduced into C-3 (in the case of 4a) and C-6 (in the case of 4b) positions. The structures of all obtained products were established on the basis of their spectral data. In the case of lactones 8–10 these structures were undoubtedly confirmed by their X-ray analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号