首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2015年   1篇
  2007年   1篇
  2006年   2篇
排序方式: 共有4条查询结果,搜索用时 531 毫秒
1
1.
Over the last few years multiple studies have been published outlining chloroplast genomes that represent many of the photosynthetic euglenid genera. However, these genomes were scattered throughout the euglenophyceaean phylogenetic tree, and focused on comparisons with Euglena gracilis. Here, we present a study exclusively on taxa within the Euglenaceae. Six new chloroplast genomes were characterized, those of Cryptoglena skujai, E. gracilis var. bacillaris, Euglena viridis, Euglenaria anabaena, Monomorphina parapyrum, and Trachelomonas volvocina, and added to six previously published chloroplast genomes to determine if trends existed within the family. With this study: at least one genome has now been characterized for each genus, the genomes of different strains from two taxa were characterized to explore intraspecific variability, and a second taxon has been characterized for the genus Monomorphina to examine intrageneric variability. Overall results showed a large amount of variability among the genomes, though a few trends could be identified both within Euglenaceae and within Euglenophyta. In addition, the intraspecific analysis indicated that the similarity of a genome sequence between strains was taxon dependent, and the intrageneric analysis indicated that the majority of the evolutionary changes within the Euglenaceae occurred intergenerically.  相似文献   
2.
Morphological studies of 16 strains belonging to the genus Monomorphina revealed a single, parietal, orbicular chloroplast in their cells. The chloroplast has a tendency to be perforated and disintegrates in aging populations and thus may appear to be many chloroplasts under the light microscope. A single chloroplast in the cells of Cryptoglena skujae is also parietally located and highly perforated. It never forms a globular and closed structure, but is open from the side of the furrow, resembling the letter C. We have verified the Monomorphina pyrum group (M. pyrum–like) on the basis of phylogenetic analysis of SSU rDNA and morphological data. The strain CCAC 0093 (misidentified as M. reeuwykiana) diverges first on the SSU rDNA phylogenetic tree. The rest of the M. pyrum–like strains form a tight cluster, subdivided into several smaller ones. Because morphological differences between the M. pyrum–like strains (including the strain CCAC 0093) do not conform to the tree topology, we suggest that they all (except the strain CCAC 0093) belong to M. pyrum. We designate a new species, M. pseudopyrum, for the strain CCAC 0093, solely on the basis of molecular characters. We also suggest that M. reeuwykiana and similar species should stay in Phacus and Lepocinclis unless detailed molecular and morphological studies show otherwise. Emended diagnoses of the genera Monomorphina and Cryptoglena and the species M. aenigmatica are also proposed, as well as the delimitation of an epitype for M. pyrum, the type species for the genus Monomorphina.  相似文献   
3.
4.
Eighteen new 16S rDNA and 16 new 18S rDNA sequences from 24 strains, representing 23 species of photoautotrophic euglenoids, were obtained in nearly their entire length. Maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses were performed on separate data (39 sequences of 16S rDNA and 58 sequences of 18S rDNA), as well as on combined data sets (37 sequences). All methods of sequence analysis gave similar results in those cases in which the clades received substantial support. However, the combined data set produced several additional well‐supported clades, not encountered before in the analyses of green euglenoids. There are three main well‐defined clades (A, B/C/D, and G) on trees from the combined data set. Clade G diverges first, while clades A and B/C/D form sister groups. Clade A consists of Euglena species sensu stricto and is divided into three sub‐clades (A1, A2, and A3). Clade A3 (composed of E. deses and E. mutabilis) branches off first; then, two sister clades emerge: A1 (composed of E. viridis‐like species) and A2 (consisting of E. agilis and E. gracilis species). Clade B/C/D consists of the Strombomonas, Trachelomonas, Cryptoglena, Monomorphina, and Colacium genera. Clade G comprises Phacus and Lepocinclis, as well as the Discoglena species of Euglena, with Discoglena branching off first, and then Phacus and Lepocinclis emerging as sister groups.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号