首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   4篇
  国内免费   8篇
  2024年   1篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   10篇
  2012年   5篇
  2011年   3篇
  2010年   6篇
  2009年   9篇
  2008年   1篇
  2007年   7篇
  2006年   9篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有85条查询结果,搜索用时 31 毫秒
1.
Schönbohm, E., Stute, U., Thienhaus, P. and Werner, U. 1988. The stimulating effect of a cold, dark pretreatment on the etioplast/chloroplast transformation of angiosperms I. The stimulating effect of cold predarkening on different stages of greening under white light. - Physiol. Plant. 72: 541–546.
The etioplast/chloroplast transformation in angiosperms is controlled by light; most of the processes are mediated by phytochrome. We have shown that in the primary leaves of etiolated seedlings of wheat ( Triticum aestivum L. cv. Kolibri), fire-bean ( Phaseolus multiflorus L. cv. Preisgewinner) and in the cotyledons of etiolated sun flower seedlings ( Helianthus annuus L. cv. macrocarpa) the chlorophyll accumulation in the phase after the end of the lag phase can be greatly stimulated by a cold predarkening period. This effect is not necessarily coupled with a red preirradiation. Furthermore the lag phase can be dramatically shortened by the cold, dark pretreatment, whereas the amount of photoconvertible protochlorophyll(ide) in the darkness remains unaffected by the cold, dark pretreatment. The stimulating effect of a cold, predarkening period on greening is fully reversible by a warm, dark phase that is placed between the cold period and the onset of the continuous white light phase. These findings cannot be generalized: We could demonstrate that in the tropical plant Momordica charantia greening under white light was not affected by different temperature pretreatments during predarkening. The stimulating effect of a cold, predarkening period on greening is assumed to have ecological relevance.  相似文献   
2.
Three isolectins denoted hereforth MBaL‐30, MBaL‐60, and MBaL‐80 were isolated from seeds extract of Momordica balsamina by 30%, 60%, and 80% ammonium sulfate saturations, respectively. The native molecular weights of these lectins, as judged by gel filtration, were 108, 56, and 160 kDa, respectively. On SDS‐PAGE, under reduced condition, 27 kDa band was obtained for all isolectins. The lectins hemagglutinating activities were variably inhibited by d ‐galactose (minimum inhibitory concentrations = 12.5mM, 50mM, and 0.391mM, respectively). MBaL‐30 and ‐60 could agglutinate all human blood types with slight preference for the A and O blood groups, whereas MBaL‐80 did not agglutinate B and AB blood types. The 3 isolectins were purified from crude seeds extract, collectively, in a single step on the affinity matrix Lactamyl‐Seralose 4B; this purified lectin fraction, which contains all isolectins, is termed MBaL. The N‐terminal of MBaL till the 25th amino acid was NLSLSELDFSADTYKSFIKNLRKQL, which shares 88% sequence identity with Momordica charantia lectin type‐2 ribosomal inactivating protein from Momordica charantia and 50% with momordin II from Momordica balsamina . MBaL retained 100% activity at up to 50°C for 30 minutes. MBaL‐30 and MBaL‐60 exhibited maximum activities in the pH range between 4 and 8, while MBaL‐80 was showing maximum activity in the pH range between 3 and 5. Treatment of MBaL‐30 and MBaL‐60 with EDTA completely abolished their hemagglutinating activities. Addition of Zn and Fe ions to the ethylenediaminetetraacetic acid–treated MBaL‐30 and MBaL‐60 lectins did not only regained the loss of activity but also resulted in 200% to 300% increase in activity, respectively. MBaL‐30 and ‐60 agglutinated gram positive Listeria monocytogenes and Staphylococcus aureus, whereas MBaL‐30 could merely agglutinate Escherichia coli . None of these lectins could arrest bacterial growth. Addition of MBaL to cancer cell lines (Gastric cancer cell line (AGS) and Gastric cencer cell line (MKN45), Glioblastoma (ECV‐304), and Human urinary bladder cancer cell line (U87‐MG)) at varying concentrations did not cause statistically significant changes on cell growth and viability.  相似文献   
3.
Bitter gourd (Momordica charantia L.) was inoculated with root-knot nematode Meloidogyne incognita to investigate the anatomical abnormalities in the affected roots. Soon after inoculation the second-stage juveniles (J2) entered at or near the root caps and migrated intercellularly towards the zone of vascular differentiation. Discrete giant cells were observed after three days of inoculation. The nematode induced hypertrophy and hyperplasia near the giant cells. After six days, the juveniles moulted to their third stage (J3). At the same, time giant cell size and density of giant cell cytoplasm increased. The continuity of vascular strands remained unaffected. Between 12 and 24 days of inoculation the giant cells enlarged several times and became multinucleate and enclosed dense and granular cytoplasm. The nematodes became almost pyriform 18 days after inoculation. The orientation of vascular strands changed, due to hypertrophy, hyperplasia and enlargement of the nematode. After 30 days of inoculation the nematodes developed into mature females and started egg laying. A large amount of parenchyma transformed into abnormal xylem.  相似文献   
4.
Momordica charantia is a well known medicinal plant used in the traditional medicinal system for the treatment of various diseases including diabetes mellitus. Recently, a novel protein termed as ADMc1 from the seed extract of M. charantia has been identified and isolated showing significant antihyperglycemic activity in type 1 diabetic rats in which diabetes was induced. However, the structure of this protein has not yet been analyzed. Homology modeling approach was used to generate a high quality protein 3D structure for the amino acid sequence of the ADMc1 protein in this study. The comparative assessment of secondary structures revealed ADMc1 as an all-alpha helix protein with random coils. Tertiary structure predicted on the template structure of Napin of B. Napus (PDB ID: 1SM7) with which the ADMc1 showed significant sequence similarity, was validated using protein structure validation tools like PROCHECK, WHAT_CHECK, VERIFY3D and ProSA. Arrangement of disulfide bridges formed by cysteine residues were predicted by the Dianna 1.1 server. The presence of multiple disulfide bond confers the stable nature of the ADMc1 protein. Further, the biological activity of the ADMc1 was assessed in non-obese diabetic (NOD) mice which are spontaneous model of type 1 diabetes. Significant reduction in the blood glucose levels of NOD mice was observed up to 8 h post administration of the rADMc1 protein. Overall, the structural characterizations with antihyperglycemic activity of this seed protein of Momordica charantia demonstrate its potential as an antidiabetic agent.  相似文献   
5.
Cucurbitaceae plants contain characteristic triterpenoids. Momordica charantia, known as a bitter melon, contains cucurbitacins and multiflorane type triterpenes, which confer bitter tasting and exhibit pharmacological activities. Their carbon skeletons are biosynthesized from 2,3-oxidosqualene by responsible oxidosqualene cyclase (OSC). In order to identify OSCs in M. charantia, RNA-seq analysis was carried out from ten different tissues. The functional analysis of the resulting four OSC genes revealed that they were cucurbitadienol synthase (McCBS), isomultiflorenol synthase (McIMS), β-amyrin synthase (McBAS) and cycloartenol synthase (McCAS), respectively. Their distinct expression patterns based on RPKM values and quantitative RT-PCR suggested how the characteristic triterpenoids were biosynthesized in each tissue. Although cucurbitacins were finally accumulated in fruits, McCBS showed highest expression in leaves indicating that the early step of cucurbitacins biosynthesis takes place in leaves, but not in fruits.

Abbreviations: OSC: oxidosqualene cyclase; RPKM: reads perkilobase of exon per million mapped reads  相似文献   

6.
Cummings  E.  Hundal  H.S.  Wackerhage  H.  Hope  M.  Belle  M.  Adeghate  E.  Singh  J. 《Molecular and cellular biochemistry》2004,261(1):99-104
The fruit of Momordica charantia (family: Cucurbitacea) is used widely as a hypoglycaemic agent to treat diabetes mellitus (DM). The mechanism of the hypoglycaemic action of M. charantia in vitro is not fully understood. This study investigated the effect of M. charantia juice on either 3H-2-deoxyglucose or N-methyl-amino-a-isobutyric acid (14C-Me-AIB) uptake in L6 rat muscle cells cultured to the myotube stage. The fresh juice was centrifuged at 5000 rpm and the supernatant lyophilised. L6 myotubes were incubated with either insulin (100 nM), different concentrations (1–10 g ml–1) of the juice or its chloroform extract or wortmannin (100 nM) over a period of 1–6 h. The results were expressed as pmol min–1 (mg cell protein)–1, n= 6–8 for each value. Basal 3H-deoxyglucose and 14C-Me-AIB uptakes by L6 myotubes after 1 h of incubation were (means ± S.E.M.) 32.14 ± 1.34 and 13.48 ± 1.86 pmol min–1 (mg cell protein)–1, respectively. Incubation of L6 myotubes with 100 nM insulin for 1 h resulted in significant (ANOVA, p < 0.05) increases in 3H-deoxyglucose and 14C-Me-AIB uptakes. Typically, 3H-deoxyglucose and 14C-Me-AIB uptakes in the presence of insulin were 58.57 ± 4.49 and 29.52 ± 3.41 pmol min–1 (mg cell protein–1), respectively. Incubation of L6 myotubes with three different concentrations (1, 5 and 10 g ml–1) of either the lyophilised juice or its chloroform extract resulted in time-dependent increases in 3H-deoxy-D-glucose and 14C-Me-AIB uptakes, with maximal uptakes occurring at a concentration of 5 g ml–1. Incubation of either insulin or the juice in the presence of wortmannin (a phosphatidylinositol 3-kinase inhibitor) resulted in a marked inhibition of 3H-deoxyglucose by L6 myotubes compared to the uptake obtained with either insulin or the juice alone. The results indicate that M. charantia fruit juice acts like insulin to exert its hypoglycaemic effect and moreover, it can stimulate amino acid uptake into skeletal muscle cells just like insulin. (Mol Cell Biochem 261: 99–104, 2004)  相似文献   
7.
苦瓜的营养价值、化学成分以及药理作用研究进展   总被引:1,自引:0,他引:1  
本文总结了半个多世纪来国内外学者对苦瓜的研究,为苦瓜进一步开发提供了借鉴。  相似文献   
8.
The antidiabetic activity of Momordica charantia (L.), Cucurbitaceae, a widely-used treatment for diabetes in a number of traditional medicine systems, was investigated in vitro. Antidiabetic activity has been reported for certain saponins isolated from M. charantia. In this study insulin secretion was measured in MIN6 β-cells incubated with an ethanol extract, saponin-rich fraction, and five purified saponins and cucurbitane triterpenoids from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (1), momordicine I (2), momordicine II (3), 3-hydroxycucurbita-5,24-dien-19-al-7,23-di-O-β-glucopyranoside (4), and kuguaglycoside G (5). Treatments were compared to incubation with high glucose (27 mM) and the insulin secretagogue, glipizide (50 μM). At 125 μg/ml, an LC-ToF-MS characterized saponin-rich fraction stimulated insulin secretion significantly more than the DMSO vehicle, p=0.02. At concentrations 10 and 25 μg/ml, compounds 3 and 5 also significantly stimulated insulin secretion as compared to the vehicle, p≤0.007, and p=0.002, respectively. This is the first report of a saponin-rich fraction, and isolated compounds from M. charantia, stimulating insulin secretion in an in vitro, static incubation assay.  相似文献   
9.
正交实验确定提取工艺后,用热水提取法得到苦瓜多糖(MCP).对MCP进行DEAE-32离子交换层析分离,得到3个多糖组分MCP1、MCP2和MCP3. 进一步采用Sephacryl S-400凝胶层析进行分离,经凝胶层析和高效液相色谱检测表明,MCP1、MCP2为均一性多糖组分.通过高效液相凝胶色谱法测定了两者的相对分子质量分别为1.16×106和7.45×105.用PMP衍生化法测定其单糖,结果表明: MCP1系由Man、Rham、GlcUA、GalUA、Glu、Gal、Xyl、Ara等单糖组成的杂多糖,摩尔比为1.03:2.93:1.00:14.95:2.16:30.70:2.85:4.50.MCP2系由Rham、GalUA、Gal、Xyl、Ara等单糖组成的杂多糖,对应的摩尔比为1.63:21.88:4.66:1.00:1.29.紫外光谱表明该多糖不含蛋白质和核酸.  相似文献   
10.
目的:从苦瓜中克隆MAP30全长基因,并将该基因连接至表达载体pPIC9中,建立酵母菌落PCR筛选方法。方法采用改良SDS法从苦瓜表皮中提取基因组DNA,设计特异性的引物,通过PCR技术扩增出全长861bp的MAP30基因。该基因经XhoⅠ和EcoRⅠ双酶切,连接至毕赤酵母表达载体pPIC9中。重组载体转化GS115菌株,运用菌落PCR鉴定重组菌株。结果:基因测序表明,该基因已成功插入酵母表达载体pPIC9α-factor分泌信号下游,同源性分析表明该基因与GeneBank(AF284811)的核苷酸同源性达99.9%,氨基酸同源性达100%。菌落PCR显示外源基因已整合入酵母GS115菌株中。结论:成功地克隆了MAP30全长基因,并构建了含MAP30基因的重组毕赤酵母表达载体,并获得了整合菌株,为下一步研究奠定了基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号