首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10118篇
  免费   174篇
  国内免费   360篇
  2023年   228篇
  2022年   106篇
  2021年   159篇
  2020年   199篇
  2019年   393篇
  2018年   331篇
  2017年   257篇
  2016年   227篇
  2015年   258篇
  2014年   608篇
  2013年   1080篇
  2012年   649篇
  2011年   565篇
  2010年   347篇
  2009年   512篇
  2008年   551篇
  2007年   540篇
  2006年   385篇
  2005年   377篇
  2004年   335篇
  2003年   269篇
  2002年   211篇
  2001年   169篇
  2000年   158篇
  1999年   179篇
  1998年   177篇
  1997年   170篇
  1996年   181篇
  1995年   156篇
  1994年   121篇
  1993年   73篇
  1992年   72篇
  1991年   69篇
  1990年   68篇
  1989年   53篇
  1988年   26篇
  1987年   49篇
  1986年   24篇
  1985年   42篇
  1984年   34篇
  1983年   26篇
  1982年   42篇
  1981年   32篇
  1980年   22篇
  1979年   34篇
  1978年   19篇
  1977年   12篇
  1976年   16篇
  1973年   10篇
  1972年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Yeast DNA ligase is radioactively labelled in vitro by incubating a crude cell extract with [α-32P]ATP. The product of this reaction is the stable covalent ligase-AMP adduct, which can be characterized by its reactivity with either pyrophosphate or nicked DNA and visualized by gel electrophoresis and autoradiography. The Saccharomyces cerevisiae DNA ligase was identified as an 89 kDa polypeptide by exploiting the fact that transformants with multiple copies of the plasmid-encoded DNA ligase (CDC9) gene overproduce the enzyme by two orders of magnitude. A similar strategy has been used to identify the Schizosaccharomyces pombe DNA ligase as an 87 kDa polypeptide. Both values agree well with the coding capacities of the respective cloned gene sequences. When the S. cerevisiae ligase is greatly overproduced with respect to wild-type levels, a second polypeptide of 78.5 kDa is also labelled and has the same properties as the 89 kDa adduct. We suggest that this polypeptide is generated by proteolysis.  相似文献   
3.
Cripto-1 is a protein participating in tissue orientation during embryogenesis but has also been implicated in a wide variety of cancers, such as colon, lung and breast cancer. Cripto-1 plays a role in the regulation of different pathways, including TGF-β/Smad and Wnt/β-catenin, which are highly associated with cell migration both during embryonal development and cancer progression. Little is known about the detailed subcellular localization of cripto-1 and how it participates in the directional movement of cells. In this study, the subcellular localization of cripto-1 in glioblastoma cells was investigated in vitro with high-resolution microscopy techniques. Cripto-1 was found to be localized to dynamic and shed filopodia and transported between cells through tunneling nanotubes. Our results connect the refined subcellular localization of cripto-1 to its functions in cellular orientation and migration.  相似文献   
4.
TAVI devices are manufactured with cylindrical frames. However, the frames are rarely cylindrical post-deployment since deformation due to localised under expansion can be induced by calcified material on the native valve leaflets exerting irregular forces upon the frame. Consequently, the leaflets within a deformed TAVI device may undergo elevated stress during operation, which may lead to premature device failure.Using computational analysis a complete TAVI device model was simulated undergoing deployment into an aortic root model derived from CT data for a patient with severe calcific aortic stenosis, followed by a pressure simulated cardiac cycle. The complete analysis was performed eight times, each with the device at a different rotational orientation relative to the native valve, with an increment spacing of 15°.The TAVI device frames consistently featured significant distortions associated with bulky calcified material at the base of the non-coronary sinus. It was found that the average von Mises stress in the prosthetic valves was only increased in one of the cases relative to an idealised device. However, the maximum von Mises stress in the prosthetic valves was elevated in the majority of the cases.Furthermore, it was found that there were preferable orientations to deploy the prosthetic device, in this case, when the prosthetic leaflets were aligned with the native leaflets. As device orientation deviated from this orientation, the stresses in the valve increased because the distance between the prosthetic commissures decreased. This potentially could represent a sufficient increase in stress to induce variation in device lifespan.  相似文献   
5.
The l-thyroxine binding site in human serum thyroxine-binding globulin was investigated by affinity labeling with N-bromoacetyl-l-thyroxine (BrAcT4). Competitive binding studies showed that, in the presence of 100 molar excess of BrAcT4, binding of thyroxine to thyroxine-binding globulin was nearly totally abolished. The reaction of BrAcT4 to form covalent binding was inhibited in the presence of thyroxine and the affinity-labeled thyroxinebinding globulin lost its ability to bind thyroxine. These results indicate BrAcT4 and thyroxine competed for the same binding site. Affinity labeling with 2 mol of BrAcT4/mol of thyroxine-binding globulin resulted in the covalent attachment of 0.7 mol of ligand. By amino acid analysis and high voltage paper electrophoresis, methionine was identified as the major residue labeled (75%). Lysine, tyrosine, and histidine were also found to be labeled to the extent of 8, 8, and 5%, respectively.  相似文献   
6.
Combination agents comprising two different pharmacophores with the same biological target have the potential to show additive or synergistic activity. Bis(thiosemicarbazonato)copper(II) complexes (e.g. 64Cu-ATSM) and nitroimidazoles (e.g. 18F-MISO) are classes of tracer used for the delineation of tumor hypoxia by positron emission tomography (PET). Three nitroimidazole-bis(thiosemicarbazonato)copper(II) conjugates were produced in order to investigate their potential as combination hypoxia imaging agents. Two were derived from the known bifunctional bis(thiosemicarbazone) H2ATSM/A and the third from the new precursor diacetyl-2-(4-N-methyl-3-thiosemicarbazone)-3-(4-N-ethylamino-3-thiosemicarbazone) - H2ATSM/en. Oxygen-dependent uptake studies were performed using the 64Cu radiolabelled complexes in EMT6 carcinoma cells. All the complexes displayed appreciable hypoxia selectivity, with the nitroimidazole conjugates displaying greater selectivity than a simple propyl derivative used as a control. Participation of the nitroimidazole group in the trapping mechanism is indicated by the increased hypoxic uptake of the 2- vs. the 4-substituted 64Cu-ATSM/A derivatives. The 2-nitroimidazole derivative of 64Cu-ATSM/en demonstrated superior hypoxia selectivity to 64Cu-ATSM over the range of oxygen concentrations tested. Biodistribution of the radiolabelled 2-nitroimidazole conjugates was carried out in EMT6 tumor-bearing mice. The complexes showed significantly different uptake trends in comparison to each other and previously studied Cu-ATSM derivatives. Uptake of the Cu-ATSM/en conjugate in non-target organs was considerably lower than for derivatives based on Cu-ATSM/A.  相似文献   
7.
Nowadays, AT1 receptor (AT1R) antagonists (ARBs) constitute the one of the most prevalent classes of antihypertensive drugs that modulate the renin-angiotensin system (RAS). Their main uses include also treatment of diabetic nephropathy (kidney damage due to diabetes) and congestive heart failure. Towards this direction, our study has been focused on the discovery of novel agents bearing different scaffolds which may evolve as a new class of AT1 receptor antagonists. To fulfill this aim, a combination of computational approaches and biological assays were implemented. Particularly, a pharmacophore model was established and served as a 3D search query to screen the ChEMBL15 database. The reliability and accuracy of virtual screening results were improved by using molecular docking studies. In total, 4 compounds with completely diverse chemical scaffolds from potential ARBs, were picked and tested for their binding affinity to AT1 receptor. Results revealed high nanomolar to micromolar affinity (IC50) for all the compounds. Especially, compound 4 exhibited a binding affinity of 199 nM. Molecular dynamics simulations were utilized in an effort to provide a molecular basis of their binding to AT1R in accordance to their biological activities.  相似文献   
8.
Focal contacts of spreading platelets with the substratum   总被引:1,自引:0,他引:1  
Contacts with glass substratum formed by the spreading rabbit platelets were examined by an antibody-exclusion method; monoclonal antibodies against 80 kD bovine serum protein were used. It was found that platelets form focal contacts in the course of spreading. The size of the largest focal contacts formed by platelets is smaller than that of the contacts formed by fibroblasts. The antibody-exclusion method revealed focal contacts of platelets much more clearly than interference reflection microscopy (IRM). The similarity of reactions involved in spreading platelets and of large nucleus-containing tissue cells is discussed.  相似文献   
9.
10.
Collagen is an attractive marker for tissue remodeling in a variety of common disease processes. Here we report the preparation of protein dendrimers as multivalent collagen targeting ligands by native chemical ligation of the collagen binding protein CNA35 to cysteine-functionalized dendritic divalent (AB2) and tetravalent (AB4) wedges. The binding of these multivalent protein constructs was studied on collagen-immobilized chip surfaces as well as to native collagen in rat intestinal tissues. To understand the importance of target density we also created collagen-mimicking surfaces by immobilizing synthetic collagen triple helical peptides at various densities on a chip surface. Multivalent display of a weak-binding variant (CNA35-Y175K) resulted in a large increase in collagen affinity, effectively restoring the collagen imaging capacities for the AB4 system. In addition, dissociation of these multivalent CNA35 dendrimers from collagen surfaces was found to be strongly attenuated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号