首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   3篇
  国内免费   3篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   2篇
  2015年   8篇
  2014年   26篇
  2013年   10篇
  2012年   15篇
  2011年   17篇
  2010年   16篇
  2009年   21篇
  2008年   15篇
  2007年   26篇
  2006年   18篇
  2005年   19篇
  2004年   29篇
  2003年   21篇
  2002年   12篇
  2001年   1篇
  2000年   16篇
  1999年   11篇
  1998年   20篇
  1997年   5篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
排序方式: 共有351条查询结果,搜索用时 234 毫秒
1.
Abstract: Gangliosides are implicated in the regulation of cellular proliferation as evidenced by differences in ganglioside composition associated with malignant transformation and density of cells in culture, as well as their inhibitory effects when added to cells growing in culture. Exogenously added gangliosides have a bimodal effect on proliferation in U-1242 MG glioma cells, inhibiting DNA synthesis in growing cells and stimulating it in quiescent cells. We investigated the mechanisms involved in stimulation of DNA synthesis using [3H]thymidine incorporation and immune complex kinase assays to identify responsible signal transduction pathways. Treatment of quiescent U-1242 MG cells with GM1 caused activation of the mitogen-activated protein (MAP) kinase isoform Erk2. Pretreatment with the specific MAP kinase kinase inhibitor PD98059 prevented the GM1-stimulated Erk2 activation and GM1-stimulated DNA synthesis. GM1 treatment stimulated another distinct signaling pathway leading to activation of p70 S6 kinase (p70s6k), and this was prevented by pretreatment with rapamycin. Rapamycin also inhibited GM1-stimulated DNA synthesis. Activation of both pathways and stimulation of DNA synthesis were inhibited by forskolin treatment; however, GM1 had no effect on cyclic AMP levels. Platelet-derived growth factor also activated both Erk2 and p70s6k but did not cause DNA synthesis, suggesting that GM1 may stimulate additional cascades, which also contribute to GM1-mediated DNA synthesis.  相似文献   
2.
Abstract: Both the Ca2+/phospholipid-dependent protein kinases (protein kinases C, PKCs) and mitogen-activated protein kinases (MAPKs) have been implicated as participants in the secretory response of bovine adrenomedullary chromaffin cells. To investigate a possible role for these kinases in exocytosis and the relationship of these kinases to one another, intact chromaffin cells were treated with agents that inhibited each of the kinases and analyzed for catecholamine release and MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)/MAPK activation after stimulation with secretagogues of differential efficacy. Of the three secretagogues tested, inactivation of PKCs by long-term phorbol 12-myristate 13-acetate (PMA) treatment or incubation with GF109203X had the greatest inhibitory effect on nicotine-induced catecholamine release and MEK/MAPK activation, a moderate effect on KCl-induced events, and little, if any, effect on Ca2+ ionophore-elicited exocytosis and MEK/MAPK activation. These results indicate that PKC plays a significant role in events induced by the optimal secretagogue nicotine and a lesser role in exocytosis elicited by the suboptimal secretagogues KCl and Ca2+ ionophore. Treatment of cells with the MEK-activation inhibitor PD098059 completely inhibited MEK/MAPK activation (IC50 1–5 µM) and partially inhibited catecholamine release induced by all secretagogues. However, PD098059 was more effective at inhibiting exocytosis induced by suboptimal secretagogues (IC50~10 µM) than that induced by nicotine (IC50~30 µM). These results suggest a more prominent role for MEK/MAPK in basic secretory events activated by suboptimal secretagogues than in those activated by the optimal secretagogue nicotine. However, PD098059 also partially blocked secretion potentiated by short-term PMA treatment, suggesting that PKC can function in part by signaling through MEK/MAPK to enhance secretion. Taken together, these results provide evidence for the preferential involvement of MEK/MAPK in basic secretory events activated by the suboptimal secretagogues KCl and Ca2+ ionophore and the participation of both PKC and MEK/MAPK in optimal secretion induced by nicotine.  相似文献   
3.
4.

Background

The poly-γ-d-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis, protects bacilli from immune surveillance and allows its unimpeded growth in the host. Recently, the importance of the PGA in the pathogenesis of anthrax infection has been reported. The PGA capsule is associated with lethal toxin (LT) in the blood of experimentally infected animals and enhances the cytotoxicity of LT.

Methods

To investigate the role of anti-PGA Abs on progression of anthrax infection, two mouse anti-PGA mAbs with Kd values of 0.8 μM and 2.6 μM respectively were produced and in silico three dimensional (3D) models of mAbs with their cognitive PGA antigen complex were analyzed.

Results

Anti-PGA mAbs specifically bound encapsulated B. anthracis H9401 and showed opsonophagocytosis activity against the bacteria with complement. The enhancement effect of PGA on LT-mediated cytotoxicity was confirmed ex vivo using mouse bone marrow-derived macrophages and was effectively inhibited by anti-PGA mAb. Passive immunization of mAb completely protected mice from PGA-enhanced LT toxicity and partially rescued mice from anthrax spore challenges. 3D structure models of these mAbs and PGA complex support specific interactions between CDR and cognitive PGA. These results indicate that mouse mAb against PGA capsule prevents the progress of anthrax disease not only by eliminating the vegetative form of encapsulated B. anthracis but also by inhibiting the enhanced cytotoxic activity of LT by PGA through specific binding with PGA capsule antigen.

General significance

Our results suggest a potential role for PGA antibodies in preventing and treating anthrax infection.  相似文献   
5.
Human African trypanosomiasis (HAT) is a lethal, vector-borne disease caused by the parasite Trypanosoma brucei. Therapeutic strategies for this neglected tropical disease suffer from disadvantages such as toxicity, high cost, and emerging resistance. Therefore, new drugs with novel modes of action are needed. We screened cultured T. brucei against a focused kinase inhibitor library to identify promising bioactive compounds. Among the ten hits identified from the phenotypic screen, AZ960 emerged as the most promising compound with potent antiparasitic activity (IC50 = 120 nM) and was shown to be a selective inhibitor of an essential gene product, T. brucei extracellular signal-regulated kinase 8 (TbERK8). We report that AZ960 has a Ki of 1.25 μM for TbERK8 and demonstrate its utility in establishing TbERK8 as a potentially druggable target in T. brucei.  相似文献   
6.
7.
8.
9.
Vanadium salts such as vanadyl sulfate (VS), potent inhibitors of protein tyrosine phosphatases, have been shown to mimic, augment, and prolong insulin's action. However, the molecular mechanism of responses to these salts is not clear. In the present studies, we examined if VS-induced effects on insulin action are associated with enhancement or augmentation in the activation state of key components of the insulin signaling pathway. Treatment of insulin receptor-overexpressing cells with insulin or VS resulted in a time-dependent transient increase in phosphorylation and activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) that peaked at about 5 min, then declined rapidly to about baseline within 30 min. However, when the cells were treated with VS before stimulation with insulin, sustained ERK 1/2 phosphorylation and activation were observed well beyond 60 min. VS treatment also prolonged the insulin-stimulated activation of phosphatidylinositol 3-kinase (PI3-K), which was associated with sustained interaction between insulin receptor substrate-1 (IRS-1) and the p(85 alpha) subunit of phosphatidylinositol 3-kinase (PI3-K) in response to insulin. These data indicate that prolongation of insulin-stimulated ERK 1/2 and PI3-K activation by VS is due to a more stable complex formation of IRS-1 with the p(85 alpha) subunit which may, in turn, be responsible for its ability to enhance and extend the biological effects of insulin.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号