首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2007年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 6 毫秒
1
1.
Prenylation and subsequent methylation are essential modifications on a significant proportion of eucaryotic proteins. Proteins such as the G-gamma subunits of G-protein coupled receptors, nuclear lamins, and guanine nucleotide-binding proteins such as Ras are prenylated and undergo methylation. Prenylated methylated protein methyl esterase (PMPMEase) readily hydrolyses the prenylated protein methyl esters, thus making this step reversible and possibly regulatory. Benzoyl-glycyl-farnesyl-cysteine methyl ester (BzGFCM) was developed as a specific PMPMEase substrate and characterized by electron spray ionization mass spectrometry (ESI-MS) to be of the calculated molecular mass. Rat liver and brain PMPMEase hydrolyzed BzGFCM, forming benzoyl-glycyl-farnesyl-cysteine (BzGFC) in a time- and concentration-dependent manner. Both enzymes cleaved BzGFCM with K(m) values of 4.58 +/- 0.30 and 25.57 +/- 2.36 microM and V(max) values of 2.21 +/- 0.03 and 0.17 +/- 0.003 nmol/min/mg, respectively. The liver enzyme eluted from a gel-filtration column as a single peak of apparent size, 89 kDa. The brain enzyme eluted as two main peaks of 53 and 890 kDa. Organophosphorus pesticides (OPs), which are suspected to be involved in human disorders such as parkinsonism, neuronal, and retinal degeneration, inhibited the liver enzyme with IC(50) values from 4.77 muM for parathion to 0.04 microM for paraoxon, respectively. Only about 25% of the brain enzyme was inhibited by 0.5-1 mM solutions of mipafox, while 0.1 and 1 mM paraoxon inhibited over 50% and 95% of the enzyme, respectively. Paraoxon is thus about 2,250 times less potent against the brain than the liver PMPMEase. BzGFCM was not hydrolyzed by various cholinesterases, indicating its specificity for PMPMEase. Perturbations in prenylated protein metabolism might play a role in noncholinergic OPs-induced toxicity, since prenylated proteins play such important roles in cell signaling, proliferation, differentiation, and apoptosis.  相似文献   
2.
Neuropathy target esterase (NTE) is a membrane protein present in various tissues whose physiological function has been recently suggested to be the maintenance of phosphatidylcholine homeostasis. Inhibition and further modification of NTE by certain organophosphorus compounds (OPs) were related to the induction of the "organophosphorus induced delayed neuropathy". Bovine chromaffin cells were cultured at 75,000cells/well in 96-well plates and exposed to 25microM mipafox or 3microM O-hexyl O-2,5-dichlorophenyl phosphoramidate (HDCP) for 60min. Inhibitors were removed by washing cells three times with Krebs solution. Then NTE activity was assayed at 0, 24, 48 and 120h after exposure using the Biomek 1000 workstation. Immediately after mipafox treatment NTE activity represented 3% of the control (6.7+/-1.9mU/10(6) cells). At 24, 48 and 120h after removing inhibitor, recorded activities were 33%, 42% and 111% of their respective controls (5.7+/-3.1; 5.7+/-1.9; 5.4+/-0.0mU/10(6) cells, respectively). Treatment with HDCP also displayed a time-dependent pattern of NTE recovery. As NTE inhibited by phosphoramidates is not reactivated in homogenized tissues, these results confirm a time-dependent regeneration of NTE after inhibition by neuropathic OPs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号