首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2540篇
  免费   625篇
  国内免费   137篇
  3302篇
  2024年   17篇
  2023年   93篇
  2022年   88篇
  2021年   133篇
  2020年   197篇
  2019年   201篇
  2018年   145篇
  2017年   190篇
  2016年   195篇
  2015年   209篇
  2014年   172篇
  2013年   219篇
  2012年   141篇
  2011年   138篇
  2010年   124篇
  2009年   165篇
  2008年   147篇
  2007年   142篇
  2006年   169篇
  2005年   123篇
  2004年   90篇
  2003年   62篇
  2002年   47篇
  2001年   33篇
  2000年   21篇
  1999年   22篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1958年   1篇
排序方式: 共有3302条查询结果,搜索用时 15 毫秒
1.
International actions to combat the threat posed by invasive alien species (IAS) to crops and biodiversity have intensified in recent years. The formulation of 15 guiding principles on IAS by the Convention on Biological Diversity (CBD) stimulated the International Plant Protection Convention (IPPC) to review its role in protecting biodiversity. IPPC standards now demonstrate clearly that the risks posed by any organism that is directly or indirectly injurious to cultivated or uncultivated plants can be assessed and managed under the IPPC. Since the IPPC, unlike the CBD, constitutes an international legal instrument recognised by the World Trade Organization, greater protection from the introduction of IAS is now available. However, phytosanitary measures can only be enacted if they can be justified by risk analysis and we outline some novel strategies to improve the assessment and management of the risks posed by IAS, highlighting some of the key challenges which remain.  相似文献   
2.
The pink, tubular, nectariferous flowers of Melocactus intortus (Cactaceae) in Puerto Rico are visited by native hummingbirds (Anthracothorax dominicus), but also by invasive honeybees (Apis mellifera) and ants (Solenopsis sp.). We sought to determine if the bees and ants significantly alter the pollination of M. intortus by measuring pollinator effectiveness. Using traditional estimates of effectiveness (visitation rate and seed set), our results show that hummingbirds were the most effective pollinators as expected. Bees and ants were less effective, and their contributions were one‐fourth to one‐tenth of that observed for hummingbirds. We then modified this measure of effectiveness by adding two components, fitness of progeny and temporal availability of visitors, both of which refine estimates of flower visitor effectiveness. With these new estimations, we found that the effectiveness values of all three animal visitors decreased; however, the role of hummingbirds as the principal pollinator was maintained, whereas the effectiveness values of bees and ants approached zero. By these new measures of overall pollinator effectiveness, the invasive honeybees and ants have little effect on the reproductive success of M. intortus.  相似文献   
3.
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiini) is an invasive wood‐boring beetle with an unusually broad host range and a proven ability to increase its host range as it colonizes new areas and encounters new tree species. The beetle is native to eastern Asia and has become an invasive pest in North America and Europe, stimulating interest in delineating host and non‐host tree species more clearly. When offered a choice among four species of living trees in a greenhouse, adult A. glabripennis fed more on golden‐rain tree (Koelreuteria paniculata Laxmann) and river birch (Betula nigra L.) than on London planetree (Platanus × acerifolia (Aiton) Willdenow) or callery pear (Pyrus calleryana Decaisne). Oviposition rate was highest in golden‐rain tree, but larval mortality was also high and larval growth was slowest in this tree species. Oviposition rate was lowest in callery pear, and larvae failed to survive in this tree species, whether they eclosed from eggs laid in the trees or were manually inserted into the trees. Adult beetles feeding on callery pear had a reduced longevity and females feeding only on callery pear failed to develop any eggs. The resistance of golden‐rain tree against the larvae appears to operate primarily through the physical mechanism of abundant sap flow. The resistance of callery pear against both larvae and adults appears to operate through the chemical composition of the tree, which may include compounds that are toxic or which otherwise interfere with normal growth and development of the beetle. Unlike river birch or London planetree, both golden‐rain tree and callery pear are present in the native range of A. glabripennis and may therefore have developed resistance to the beetle by virtue of exposure to attack during their evolutionary history.  相似文献   
4.
Aim Species capable of vigorous growth under a wide range of environmental conditions should have a higher chance of becoming invasive after introduction into new regions. High performance across environments can be achieved either by constitutively expressed traits that allow for high resource uptake under different environmental conditions or by adaptive plasticity of traits. Here we test whether invasive and non‐invasive species differ in presumably adaptive plasticity. Location Europe (for native species); the rest of the world and North America in particular (for alien species). Methods We selected 14 congeneric pairs of European herbaceous species that have all been introduced elsewhere. One species of each pair is highly invasive elsewhere in the world, particularly so in North America, whereas the other species has not become invasive or has spread only to a limited degree. We grew native plant material of the 28 species under shaded and non‐shaded conditions in a common garden experiment, and measured biomass production and morphological traits that are frequently related to shade tolerance and avoidance. Results Invasive species had higher shoot–root ratios, tended to have longer leaf‐blades, and produced more biomass than congeneric non‐invasive species both under shaded and non‐shaded conditions. Plants responded to shading by increasing shoot–root ratios and specific leaf area. Surprisingly, these shade‐induced responses, which are widely considered to be adaptive, did not differ between invasive and non‐invasive species. Main conclusions We conclude that high biomass production across different light environments pre‐adapts species to become invasive, and that this is not mediated by plasticities of the morphological traits that we measured.  相似文献   
5.
6.
7.
Ecosystem management in the face of global change requires understanding how co-occurring threats affect species and communities. Such an understanding allows for effective management strategies to be identified and implemented. An important component of this is differentiating between factors that are within (e.g. invasive predators) or outside (e.g. drought, large wildfires) of a local manager's control. In the global biodiversity hotspot of south-western Australia, small- and medium-sized mammal species are severely affected by anthropogenic threats and environmental disturbances, including invasive predators, fire, and declining rainfall. However, the relative importance of different drivers has not been quantified. We used data from a long-term monitoring program to fit Bayesian state-space models that estimated spatial and temporal changes in the relative abundance of four threatened mammal species: the woylie (Bettongia penicillata), chuditch (Dasyurus geoffroii), koomal (Trichosurus vulpecula) and quenda (Isoodon fusciventor). We then use Bayesian structural equation modelling to identify the direct and indirect drivers of population changes, and scenario analysis to forecast population responses to future environmental change. We found that habitat loss or conversion and reduced primary productivity (caused by rainfall declines) had greater effects on species' spatial and temporal population change than the range of fire and invasive predator (the red fox Vulpes vulpes) management actions observed in the study area. Scenario analysis revealed that a greater extent of severe fire and further rainfall declines predicted under climate change, operating in concert are likely to further reduce the abundance of these species, but may be mitigated partially by invasive predator control. Considering both historical and future drivers of population change is necessary to identify the factors that risk species recovery. Given that both anthropogenic pressures and environmental disturbances can undermine conservation efforts, managers must consider how the relative benefit of conservation actions will be shaped by ongoing global change.  相似文献   
8.
Intact tropical forests are generally considered to be resistant to invasions by exotic species, although the shrub Clidemia hirta (Melastomataceae) is highly invasive in tropical forests outside its native range. Release from natural enemies (e.g., herbivores and pathogens) contributes to C. hirta invasion success where native melastomes are absent, and here we examine the role of enemies when C. hirta co-occurs with native Melastomataceae species and associated herbivores and pathogens. We study 21 forest sites within agricultural landscapes in Sabah, Malaysian Borneo, recording herbivory rates in C. hirta and related native Melastoma spp. plants along two 100-m transects per site that varied in canopy cover. Overall, we found evidence of enemy release; C. hirta had significantly lower herbivory (median occurrence of herbivory per plant = 79% of leaves per plant; median intensity of herbivory per leaf = 6% of leaf area) than native melastomes (93% and 20%, respectively). Herbivory on C. hirta increased when closer to native Melastoma plants with high herbivory damage, and in more shaded locations, and was associated with fewer reproductive organs on C. hirta. This suggests host-sharing by specialist Melastomataceae herbivores is occurring and may explain why invasion success of C. hirta is lower on Borneo than at locations without related native species present. Thus, natural enemy populations may provide a “biological control service” to suppress invasions of exotic species (i.e., biotic resistance). However, lower herbivory pressures in more open canopy locations may make highly degraded forests within these landscapes more susceptible to invasion.  相似文献   
9.
Islands: stability, diversity, conservation   总被引:1,自引:0,他引:1  
Islands present both a diversity and a stability paradox. They are often highly species-poor but have considerable biological interest in terms of extraordinary endemic genera and taxonomically isolated groups. They appear to be stable, as in some cases these organisms have persisted for many millions of years, and having an oceanic climate, extreme climatic events may be comparatively rare. However, when subject to extrinsic (anthropogenic) disturbance they do not appear to be stable, but often suffer catastrophic ecological change. These apparent paradoxes are resolved when it is realized that all these features are consequences of the same island characteristics: biotic isolation and oceanicity. As a result of these two characteristics, far oceanic islands are quantitatively different from continental systems in the nature of their ecological processes, which appear to give rise to an extreme punctuated equilibrium model of evolutionary change. Endemics may be ancient relict endemics displaying prolonged stasis and persistence, or products of adaptive radiation representing rapid punctuational events. A process-based definition of a relict endemic (palaeoendemic) is one whose founding lineage (i.e. the original continental source taxon) has not left any descendents. A corollary of this definition is that the time of divergence between an endemic and its continental sister-group should predate the colonization of the island by the now endemic lineage. An example is Dicksonia arborescens which has been on St Helena for at least 9 Myrs and no longer occurs in the likely source area of Africa. These relict endemics, frequent on islands, are important as the last remnants of tranches of biodiversity that have vanished elsewhere. Island conservation strategies require an integrated understanding of both sides of the diversity and stability paradox so that both island processes and island organisms can be conserved.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号