首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  5篇
  2006年   1篇
  2005年   1篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The present study is a biochemical characterization of the photophore lenses of the midshipman fish, Porichthys notatus, a species that bears 800 photophores distributed over the body surface. The biochemical properties of the photophore lenses were compared with those of the eye lens with which they share a similar developmental origin and analogous function. To achieve a high refractive index, the vertebrate eye lens has a relatively high concentration of structural proteins (20–50%, depending on species) and a simple protein composition, that is, relatively few proteins are synthesized in comparison to other tissues. Similarly, the photophore lenses of P. notatus had a relatively high protein concentration (average = 29%, n = 5) and approximately 60% of the total soluble protein was represented by two subunit species of 33 kD and 35 kD on denaturing polyacrylamide gels. The structural proteins of the eye lens are of two principle types: 1) and polypeptides which belong to vertebrate lens-specific crystallin families, and, 2) enzymes recruited into the lens which take on the function of structural proteins. Here, we report that the two major photophore lens subunits of 33 kD and 35 kD are biochemically similar to each other, but are clearly distinct from any of the previously characterized crystallins. Therefore, we propose that photophore lenses appear to recruit a novel protein.  相似文献   
2.
It is well known that plasma androgens are rapidly released in response to aggressive or sexual stimuli in a broad array of vertebrates. However, experimental work on behavioral functions of rapid androgen elevation is rare. A combination of field-based behavioral experiments and lab-based neuroendocrinological approaches is beginning to show how steroid hormones rapidly regulate the expression of vocal communication signals in Gulf toadfish (Opsanus beta). Male toadfish emit multiharmonic "boatwhistles" and shorter-duration, broadband "grunts" during intraspecific communication. Neurophysiology experiments demonstrate that androgens and glucocorticoids rapidly modify vocal motor patterning in male toadfish. In this study, we simulated territorial intrusions (vocal "challenges") with acoustic playbacks to toadfish in the field, and observed simultaneous, rapid (within 5-20 min) changes in vocalizations and steroid hormones. Both plasma androgens and vocal activity increased following the presentation of pure tones that mimic the duration of natural boatwhistles (275 ms), while they remained unchanged following playbacks of tone stimuli that mimic the duration of grunts (75 ms) or the upper-range of boatwhistles (475 ms). Circulating glucocorticoids were elevated in calling vs. non-calling males but were unaffected by playback stimuli, suggesting a role in the energetics of vocalization. These results strongly suggest that one function of rapid androgen elevation in response to social challenge is to mediate similarly rapid changes in territorial vocal signaling. Given the conserved organization of neuroendocrine and vocal motor systems, rapid steroid action on vocalization mechanisms may be true of other vocal vertebrates as well, including birds and mammals.  相似文献   
3.
Synopsis The midshipman fish, Porichthys notatus, is a visually active nocturnal predator. It must acquire exogenous sources of luciferin to remain luminescent and feeds on a variety of luminescent prey. Its ecomorphological adaptations for nocturnal predation were examined by observing predation on zooplankton illuminated by dinoflagellates. Its visual sensitivity is well adapted for detection of its own luminescence and its prey's luminescence. P. notatus can detect the luminescence of dinoflagellates and use this indirect light to increase predation on nonluminescent prey. Flash frequency and duration modulated predation rates. The interval between flash onset and strike initiation regulated strike success. High prey concentration decreased predation success due to increased optical and mechanosensory noise. Other ecomorphological adaptations of this predator to its special photic environment include a pigmented digestive tract, duplex retina with the capacity to discriminate emission spectra, contractible pupil, and the potential to counter illuminate. These morphological adaptations combined with an ambush predator style allow effective predation while minimizing exposure risk.  相似文献   
4.
The sonic muscle of type 1 male midshipman fish produces loud and enduring mating calls. Each sonic muscle fiber contains a tubular contractile apparatus with radially arranged myofibrillar plates encased in a desmin-rich cytoskeleton that is anchored to broad Z bands (~1.2 μm wide). Immunomicroscopy has revealed patches of myosin-rich “flares” emanating from the contractile tubes into the peripheral sarcoplasm along the length of the fibers. These flares contain swirls of thick filaments devoid of associated thin filaments. In other regions of the sarcoplasm at the inner surface of the sarcolemma and near Z bands, abundant ladder-like leptomeres occur with rungs every 160 nm. Leptomeres consist of dense arrays of filaments (~4 nm) with a structure that resembles myofibrillar Z band structure. We propose that flares and leptomeres are distinct filamentous arrays representing site-specific processing of myofibrillar components during the assembly and disassembly of the sarcomere. Recent reports that myosin assembles into filamentous aggregates before incorporating into the A band in the skeletal muscles of vertebrates and Caenorhabditis elegans suggest that sonic fibers utilize a similar pathway. Thus, sonic muscle fibers, with their tubular design and abundant sarcoplasmic space, may provide an attractive muscle model to identify myofibrillar intermediates by structural and molecular techniques. This work was supported by the Intramural Research Program of the NIAMS, NIH, HHS (KW).  相似文献   
5.
Comparative studies over the past year have revealed two new insights into the role of neuropeptides in the evolution of social behaviors. First, across vertebrate taxa, certain neuropeptide effects appear to be gender-specific. Second, species variations in receptor gene structure can alter neuropeptide receptor distribution and thereby contribute to species differences in social behavior.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号