首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  1996年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1986年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The new genus Pycnococcus Guillard is based on several clones from the western North Atlantic and Gulf of Mexico. The type and only described species, Pycnococcus provasolii Guillard, sp. nov., is typified by clone Ω48-23 from the North Atlantic. Cells of Pycnococcus provasolii are solitary, spherical, 1.5–4.0 μm in diameter, have a resistant cell wall lacking sporopollenin, and have the ultrastructural characteristics of green algae. With the light microscope they are scarcely distinguishable from cells of other coccoid planktonic organisms. In pigmentation P. provasolii resembles Micromonas pusilla, Mantoniella squamata, and Mamiella gilva in having chl a, much chl b, Mg 2,4-divinylphaeoporphyrin a5 monomethyl ester (presumably), and prasinoxanthin as a major xanthophyll. The pyrenoid of P. provasolii has a cytoplasmic channel, which is unique among species closely related to it. Flagellates, occurring rarely in culture, are similar to but distinguishable from known Pedinomonas species by size and shape. Pycnococcus provasolii is referred to the new family Pycnococcaceae Guillard, in the order Mamiellales of the class Micromonadophyceae (Chlorophyta). Clones of Pycnococcus provasolii are oceanic in nutritional characteristics, require only vitamin B12 in culture, and are well adapted to growth under blue or blue-violet light of low intensity.  相似文献   
2.
Partial sequences from the nuclear-encoded 18S and 26S ribosomal RNA molecules from representatives of the five classes of Chlorophyta sensu Mattox and Stewart (1984) were analyzed cladistically in a study of the phylogenetic relationships among the Micromonadophyceae, Pleurastrophyceae, and other green algae. The sequence data indicate that the Micromonadophyceae (= Prasinophyceae) is not monophyletic but comprises at least three lineages occupying a basal position among the green algae. Though the Pleurastrophyceae and the Ulvophyceae both possess counter-clockwise basal body orientations, the sequence data indicate that the Pleurastrophyceae is the sister group to the Chlorophyceae. The molecular data alone do not resolve the monophyly of the Pleurastrophyceae or the Ulvophyceae; however, a combined data set of molecular and non-molecular characters support a monophyletic Pleurastrophyceae. Analyses with user-defined tree topologies and the bootstrap method of character resampling indicate that the relationships shown in the most parasimonious cladograms are well supported by the character data.  相似文献   
3.
Summary A light-harvesting pigment-protein complex has been isolated fromMantoniella squamata (Micromonadophyceae, Chlorophyta) by nondenaturing polyacrylamide-gel electrophoresis. The complex runs as two bands of molecular weights 54,000 and 55,000. There are two constituent polypeptides of molecular weights 20,500 and 22,000. Antibodies were raised to the 20,500-dalton polypeptides from this complex and to the 24,500-dalton polypeptide from the analogous complex ofPedinomonas minor (Micromonadophyceae). The antibodies to theM. squamata polypeptide are specific for both polypeptides of theM. squamata light-harvesting complex, as well as for a 27,000-dalton polypeptide of undetermined function. The antibodies to theP. minor polypeptide are specific for polypeptide components of the light-harvesting complex of that alga. The antibodies specific for theM. squamata light-harvesting complex polypeptides do not cross react with any polypeptides ofP. minor thylakoid membranes, as demonstrated by crossed immunoelectrophoresis. Similarly, no polypeptides ofM. squamata thylakoids cross react with the antibodies specific forP. minor light-harvesting complex polypeptides. These results indicate that the light-harvesting complex ofM. squamata is structurally very different from that ofP. minor. In a survey of several land plants and green algae, including representatives of all classes of green algae, a light-harvesting complex homologous to that ofM. squamata was found only inMicromonas pusilla. All other organisms tested possessed a lightharvesting complex homologous to that ofP. minor. The evolutionary and taxonomic implications of the novelM. squamata light-harvesting complex are discussed.  相似文献   
4.
The biosynthesis of the light-harvesting complex (LHC) polypeptides of the green flagellate Mantoniella squamata (Manton et Parke) Desikachary (Micromonadophyceae, Chlorophyta) was examined by in vivo polypeptide labeling and immunoprecipitation of in vitro translation products. Using protein synthesis inhibitors, the LHC polypeptides were shown to be synthesized on 80S cytoplasmic ribosomes and not in the chloroplasts of cells. Poly (A)+ RNA was isolated and proteins were synthesized by a rabbit reticulocyte lysate system, with antisera raised against M. squamata LHC used for immunoprecipitation from the translation products. One polypeptide 3-5 kDa larger than mature LHC polypeptides was immunoprecipitated. These studies indicate that although the LHC of M. squamata is quite different from the LHC of most green plants, the LHC polypeptides are synthesized as precursors in the cytoplasm of the cell and suggest that the genes encoding these polypeptides are located in the nucleus.  相似文献   
5.
6.
Pigments were isolated from Mesostigma viride Lauterborn by reversed-phase high-performance liquid chromatography and compared to standards from Chlamydomonas reinhardtii Dang. and Bryopsis plumose (Huds.) Ag. M. viride possesses chlorophylls a and b, α and β-carotenes, and the xanthophylls siphonaxanthis, siphonein, neoxanthin, violaxanthin and echinenone. In addition, three unidentified xanthophylla were detected. Neither lutein nor zeaxanthin were detected. The pigment composition of M. viride was similar to that of B. plumosa which had chlorophylls a and b, ?- and α-carotenes, siphonaxanthin, siphonein, neoxanthin, violaxanthin, and two of the unidentified xanthophylls found in M. viride. The similarities in the pigments of Mesostigma and Bryopsis and other characters suggest that Mesostigma may be related to a flagellate ancestor of the Ulvophyceae.  相似文献   
7.
To provide insights into the occurrence, evolution, and phylogenetic distribution of discontinuous mitochondrial and chloroplast large subunit ribosomal RNAs (LSU rRNAs) among green algae, we surveyed 12 taxa representing three classes of green algae: the Chlorophyceae, Pleurastrophyceae, and Micromonadophyceae (sensu Mattox and Stewart 1984). We present evidence that discontinuous mitochondrial and chloroplast LSU rRNAs are quite widespread among green algae. Mitochondrial LSU rRNAs appear discontinuous in zoosporic chlorophycean lineages displaying a clockwise or directly opposed configuration in their flagellar apparatus, as well as in chlorococcalean autosporic taxa phylogenetically related to them, but are continuous among zoosporic green algal lineages with a counterclockwise flagellar apparatus configuration, as well as among chlorococcalean autosporic taxa phylogenetically related to them. Chloroplast LSU rRNAs appear discontinuous in all of the lineages investigated. Discontinuous mitochondrial LSU rRNA represents a molecular trait that might have originated at or near the base of Chlorophyceae, whereas discontinuous chloroplast LSU rRNA might have developed very early in the evolutionary history of the green algal group itself. We suggest, therefore, that the presence of discontinuous mitochondrial but not chloroplast LSU rRNA can be used as an additional character in assessing phylogenetic affiliations among green algae.  相似文献   
8.
Photosynthetic pigments of the green flagellate Pseudoscourfieldia marina (Throndsen) Manton (Micromonadophyceae) are similar to those of the coccoid Pycnococcus provasolii Guillard; prasinoxanthin is the predominant carotenoid. Other organisms that possess prasinoxanthin also possess additional pigments not found in either P. marina or P. provasolii. Uriolide, a xanthophyll previously described from the coccoid done URI 266G, was also found in Mantoniella squamata (Manton et Parke) Desikachary, Micromonas pusilla Manton et Parke and Mamiella gilva (Parks et Rayns) Moestrup, all flagellate members of the Mamiellales, and the coccoid clone IV E5G. Other unidentified carotenoids were also present in M. squamata, M. pusilla, and M. gilva. These results suggest that P. marina and the coccoid organisms URI 266G and IV E5G may be related to the Mamiellales, and that P. provasolii may be more closely related to P. marina than to M. squamata, M. pusilla, and M. gilva.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号