首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8340篇
  免费   637篇
  国内免费   632篇
  2024年   18篇
  2023年   168篇
  2022年   149篇
  2021年   217篇
  2020年   221篇
  2019年   286篇
  2018年   238篇
  2017年   228篇
  2016年   262篇
  2015年   267篇
  2014年   332篇
  2013年   486篇
  2012年   279篇
  2011年   342篇
  2010年   263篇
  2009年   342篇
  2008年   385篇
  2007年   422篇
  2006年   440篇
  2005年   382篇
  2004年   362篇
  2003年   361篇
  2002年   291篇
  2001年   278篇
  2000年   258篇
  1999年   229篇
  1998年   181篇
  1997年   188篇
  1996年   170篇
  1995年   127篇
  1994年   167篇
  1993年   140篇
  1992年   133篇
  1991年   118篇
  1990年   99篇
  1989年   76篇
  1988年   69篇
  1987年   75篇
  1986年   62篇
  1985年   61篇
  1984年   51篇
  1983年   48篇
  1982年   54篇
  1981年   47篇
  1980年   38篇
  1979年   50篇
  1978年   41篇
  1977年   24篇
  1976年   17篇
  1975年   20篇
排序方式: 共有9609条查询结果,搜索用时 15 毫秒
1.
《水生昆虫》2012,34(2):139-155
In the Volga Basin, the small Baikalian amphipod Gmelinoides fasciatus was introduced in 1965 into the Gorky reservoir in order to enhance fish production; it appeared in 1986 in the Rybinsk reservoir and we recorded it during monitoring activities in 2006 at Tver. In total, at the monitoring site Tver/Migalovo 69 benthic invertebrate taxa were identified. We compared data from three summer seasons. During summer low flow period Gmelinoides fasciatus did not exceed a share of 12.6% considering individual (ind) densities (mean abundance 165 ± 104 ind m?2) and 14.2% considering biomass (mean biomass 0.39 ± 0.44 g m?2). Abundances and biomass of G. fasciatus were shown to be stable over three years and no increase was observed. The monthly dataset (March–November 2008) revealed dynamics in relation to the native benthic communities and it was shown that the maximal densities of Gmelinoides did not exceed 587 ind m–2. Understanding the effects on benthic communities caused by the invasive amphipod Gmelinoides fasciatus is crucial in order to predict further developments in European inland waters and to establish management strategies.  相似文献   
2.
A faster rate of nuclear DNA evolution has recently been found for plants occupying warmer low latitudes relative to those in cooler high latitudes. That earlier study by our research group compared substitution rates within the variable internal transcribed spacer (ITS) region of the ribosomal gene complex amongst 45 congeneric species pairs, each member of which differed in their latitudinal distributions. To determine whether this rate differential might also occur within highly conserved DNA, we sequenced the 18S ribosomal gene in the same 45 pairs of plants. We found that the rate of evolution in 18S was 51% faster in the tropical plant species relative to their temperate sisters and that the substitution rate in 18S correlated positively with that in the more variable ITS. This result, with a gene coding for ribosomal structure, suggests that climatic influences on evolution extend to functionally important regions of the genome.  相似文献   
3.
The effect of dolichyl monophosphate on the permeability properties of dimyristoylphosphatidylcholine bilayers to alkaline cations, Ca2+ and glucose has been determined by stop-flow spectrophotometry. The results show that, in con trast to free dolichol effects, the monophosphate derivative increased the permeability following a decreasing order of the permeating particle size. Phase diagrams indicate that dolichyl monophosphate is fully incorporated into the phosphatidylcholine bilayer around 0.75% weight/weight ratio. For these ratios, the permeation of ions is higher in the gel than in the liquid crystalline state.  相似文献   
4.
5.
1. Ants are widespread in tropical rainforests, including in the canopy where territorially dominant arboreal species represent the main part of the arthropod biomass. 2. By mapping the territories of dominant arboreal ant species and using a null model analysis and a pairwise approach this study was able to show the presence of an ant mosaic on the upper canopy of a primary Neotropical rainforest (c. 1 ha sampled; 157 tall trees from 28 families). Although Neotropical rainforest canopies are frequently irregular, with tree crowns at different heights breaking the continuity of the territories of dominant ants, the latter are preserved via underground galleries or trails laid on the ground. 3. The distribution of the trees influences the structure of the ant mosaic, something related to the attractiveness of tree taxa for certain arboreal ant species rather than others. 4. Small‐scale natural disturbances, most likely strong winds in the area studied (presence of canopy gaps), play a role by favouring the presence of two ant species typical of secondary formations: Camponotus femoratus and Crematogaster levior, which live in parabiosis (i.e. share territories and nests but lodge in different cavities) and build conspicuous ant gardens. In addition, pioneer Cecropia myrmecophytic trees were recorded.  相似文献   
6.
The factors determining the onset and extent of reconstructive denaturation of proteins were considered by comparing circular dichroism (CD) data of seven proteins and previously published findings. The effects of sodium dodecyl sulfate (SDS) on the conformation of the following proteins were tested: lysozyme, the mitogens fromPhytolacca americana (fractions Pa2 and Pa4), lectin fromWistaria floribunda, ovine lutropin, a Bence Jones protein, and histone H2B. While the helix content of lysozyme was raised by SDS slightly, in the Bence Jones protein andW. floribunda lectin it increased from near zero to about 25–30%. In histone H2B the helix content was raised by SDS even to about 48%. However, no clear indication of helix formation could be observed in the mitogens and lutropin, even at low pH or 2.0–2.5. The tertiary structure of the proteins was perturbed by SDS. It was concluded that the reorganization of secondary structure of the proteins was favored by the following factors: (1) presence of helicogenic amino acid sequences in the protein, (2) availability of positively charged sites of the basic amino acids for interactions with the dodecyl ion, (3) absence of a large surplus of negatively charged sites on the surface of protein, and (4) absence of extensive disulfide cross-linking within the macromolecule. Both hydrophobic and electrostatic interactions occur in reconstructive denaturation, and the newly formed helices are stabilized by hydrophobic shielding by the alkyl chains of the alkyl sulfate.  相似文献   
7.
Aim  The aim of this study was to assess the causal mechanisms underlying populational subdivision in Drosophila gouveai , a cactophilic species associated with xeric vegetation enclaves in eastern Brazil. A secondary aim was to investigate the genetic effects of Pleistocene climatic fluctuations on these environments.
Location  Dry vegetation enclaves within the limits of the Cerrado domain in eastern Brazil.
Methods  We determined the mitochondrial DNA haplotypes of 55 individuals (representing 12 populations) based on sequence data of a 483-bp fragment from the cytochrome c oxidase subunit II (COII) gene. Phylogenetic and coalescent analyses were used to test for the occurrence of demographic events and to infer the time of divergence amongst genetically independent groups.
Results  Our analyses revealed the existence of two divergent subclades (G1 and G2) plus an introgressed clade restricted to the southernmost range of D. gouveai . Subclades G1 and G2 displayed genetic footprints of range expansion and segregated geographical distributions in south-eastern and some central highland regions, east and west of the Paraná River valley. Molecular dating indicated that the main demographic and diversification events occurred in the late to middle Pleistocene.
Main conclusions  The phylogeographical and genetic patterns observed for D. gouveai in this study are consistent with changes in the distribution of dry vegetation in eastern Brazil. All of the estimates obtained by molecular dating indicate that range expansion and isolation pre-dated the Last Glacial Maximum, occurring during the late to middle Pleistocene, and were probably triggered by climatic changes during the Pleistocene. The current patchy geographical distribution and population subdivision in D. gouveai is apparently closely linked to these past events.  相似文献   
8.
9.
The non‐toxic compound N‐acetyl‐L‐phosphinothricin (N‐Ac‐L‐PPT) is used in a so‐called deacetylation system to induce male sterility in transgenic plants by tapetum specific deacetylation to the herbicide L‐phosphinothricin (L‐PPT). A procedure was developed to produce pure racemic and L‐isomeric N‐Ac‐PPT containing less than 30 ppm residual PPT. Experiments applied to wild type tobacco and PPT‐resistant tobacco showed that the maximal tolerated N‐Ac‐PPT concentration would be less than 45 mM of the L‐isomer. Otherwise unspecific deacetylation by several acylases, as well as by environmental conditions like higher temperatures or pHs beyond neutrality, increased the residual L‐PPT content to toxic concentrations. In contrast, N‐acetyl‐L‐phosphinothricyl‐alanyl‐alanine (N‐Ac‐L‐PPTT), a substance also occurring during the biosynthesis of phosphinothricyl‐alanyl‐alanine (PPTT) by some Streptomyces species, was tolerated up to 274 mM by wild type tobacco plants. However, the ArgE deacatylase from Escherichia coli originally used in the deacetylation system, as well as some other acylases, showed no activity towards N‐Ac‐L‐PPTT.  相似文献   
10.
The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation‐resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation – an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life‐history patterns – suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm‐producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency‐dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re‐invention of anisogamy within the context of a sporophyte‐dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate‐encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re‐establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号